• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Yoshiwaki Michio  吉脇 理雄

ORCIDConnect your ORCID iD *help
Researcher Number 90613183
Other IDs
Affiliation (Current) 2025: 東北大学, 数理科学共創社会センター, 准教授
Affiliation (based on the past Project Information) *help 2022 – 2024: 大阪公立大学, 数学研究所, 特別研究員
2020 – 2021: 国立研究開発法人理化学研究所, 革新知能統合研究センター, 客員研究員
Review Section/Research Field
Principal Investigator
Basic Section 12040:Applied mathematics and statistics-related
Keywords
Principal Investigator
導来同値 / ノイズ安定性 / 2パラメータパーシステントホモロジー / Bridgeland安定性条件 / 2パラメータパーシステントホモロジー / 区間表現 / Auslander-Reitenクイバー / 位相的時空間解析
  • Research Projects

    (2 results)
  • Research Products

    (13 results)
  • Co-Researchers

    (1 People)
  •  Bridgeland安定性条件の位相的データ解析への応用Principal Investigator

    • Principal Investigator
      吉脇 理雄
    • Project Period (FY)
      2024 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 12040:Applied mathematics and statistics-related
    • Research Institution
      Osaka Metropolitan University
  •  位相的時空間解析に向けたノイズ安定性の解明:導来同値の活用Principal Investigator

    • Principal Investigator
      吉脇 理雄
    • Project Period (FY)
      2020 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 12040:Applied mathematics and statistics-related
    • Research Institution
      Osaka Metropolitan University
      Institute of Physical and Chemical Research

All 2023 2022 2021 2020

All Journal Article Presentation

  • [Journal Article] On approximation of 2D persistence modules by interval-decomposables2023

    • Author(s)
      Asashiba Hideto、Escolar Emerson G.、Nakashima Ken、Yoshiwaki Michio
    • Journal Title

      Journal of Computational Algebra

      Volume: 6-7 Pages: 100007-100007

    • DOI

      10.1016/j.jaca.2023.100007

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18K03207, KAKENHI-PROJECT-20K03760, KAKENHI-PLANNED-20H05884
  • [Journal Article] Approximation by interval-decomposables and interval resolutions of persistence modules2023

    • Author(s)
      Asashiba Hideto、Escolar Emerson G.、Nakashima Ken、Yoshiwaki Michio
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 227 Issue: 10 Pages: 107397-107397

    • DOI

      10.1016/j.jpaa.2023.107397

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18K03207, KAKENHI-PROJECT-20K03760, KAKENHI-PLANNED-20H05884
  • [Journal Article] Algebraic stability theorem for derived categories of zigzag persistence modules2022

    • Author(s)
      Hiraoka Yasuaki、Ike Yuichi、Yoshiwaki Michio
    • Journal Title

      Journal of Topology and Analysis

      Volume: - Pages: 1-45

    • DOI

      10.1142/s1793525322500091

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20K03760, KAKENHI-PROJECT-19KK0068, KAKENHI-ORGANIZER-22H05104, KAKENHI-PROJECT-20H00119, KAKENHI-PLANNED-22H05107
  • [Journal Article] Algebraic stability theorem for derived categories of zigzag persistence modules2022

    • Author(s)
      Y. Hiraoka, Y. Ike and M. Yoshiwaki
    • Journal Title

      Proceedings of the 53rd Symposium on Ring Theory and Representation Theory

      Volume: -

    • Data Source
      KAKENHI-PROJECT-20K03760
  • [Journal Article] On isomorphisms of generalized multifold extensions of algebras without nonzero oriented cycles2021

    • Author(s)
      Asashiba, Hideto: Kimura, Mayumi; Nakashima, Ken; Yoshiwaki, Michio
    • Journal Title

      Comm. Algebra

      Volume: 49 Issue: 3 Pages: 1048-1070

    • DOI

      10.1080/00927872.2020.1826958

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18K03207, KAKENHI-PROJECT-20K03760
  • [Presentation] Algebraic stability theorem for derived categories of zigzag persistence modules2023

    • Author(s)
      Y. Hiraoka、Y. Ike、M. Yoshiwaki
    • Organizer
      TDA week 2023
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03760
  • [Presentation] パーシステントホモロジーのノイズ安定性と導来圏2023

    • Author(s)
      吉脇 理雄
    • Organizer
      研究集会「パーシステントホモロジーと表現論」
    • Data Source
      KAKENHI-PROJECT-20K03760
  • [Presentation] Approximation by interval-decomposables and interval resolutions of persistence modules2022

    • Author(s)
      エスカラ エマソン ガウ, 浅芝 秀人, 中島 健, 吉脇 理雄
    • Organizer
      第54回環論および表現論シンポジウム
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03760
  • [Presentation] Approximation by interval-decomposables and interval resolutions of 2D persistence modules2022

    • Author(s)
      浅芝 秀人, Emerson G. Escolar, 中島 健, 吉脇 理雄
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-20K03760
  • [Presentation] Algebraic stability theorem for derived categories of zigzag persistence modules2021

    • Author(s)
      平岡 裕章,池 祐一,吉脇 理雄
    • Organizer
      第53回環論および表現論シンポジウム
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K03760
  • [Presentation] パーシステンス加群の導来圏と代数的安定性定理2021

    • Author(s)
      吉脇 理雄
    • Organizer
      九州大学マス・フォア・インダストリ研究所 共同利用研究「位相的データ解析の理論と応用」
    • Data Source
      KAKENHI-PROJECT-20K03760
  • [Presentation] 区間表現による2Dパーシステント表現の近似2021

    • Author(s)
      浅芝 秀人,Emerson G. Escolar,中島 健,吉脇 理雄
    • Organizer
      日本応用数理学会第17回研究部会連合発表会
    • Data Source
      KAKENHI-PROJECT-20K03760
  • [Presentation] ジグザグパーシステント加群に対する代数的安定性定理2020

    • Author(s)
      平岡 裕章,吉脇 理雄
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-20K03760
  • 1.  浅芝 秀人
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 3 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi