• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kubo Toshihisa  久保 利久

ORCIDConnect your ORCID iD *help
Researcher Number 90647637
Other IDs
Affiliation (Current) 2025: 龍谷大学, 経済学部, 准教授
Affiliation (based on the past Project Information) *help 2018 – 2024: 龍谷大学, 経済学部, 准教授
2016: 龍谷大学, 経済学部, 講師
2014 – 2015: 東京大学, 数理(科)学研究科(研究院), 助教
Review Section/Research Field
Principal Investigator
Basic Section 12010:Basic analysis-related / Basic Section 12010:Basic analysis-related / Basic analysis
Keywords
Principal Investigator
微分対称性破れ作用素 / 三重対角行列式 / K-type構造 / 絡微分作用素 / 極小表現 / 特殊多項式 / F-method / K-type分解 / 対称性破れ作用素 / 直交多項式 … More / 特殊関数 / 補系列表現 / 直行多項式系 / Sylvester行列式 / 解空間のKタイプ構造 / Kable作用素 / factorial property / palindromic property / tridiagonal determinant / K-type formula / Huen多項式 / ホイン多項式 / 関数等式 / Cayley continuant / Heun多項式 / 超幾何多項式 / 不変微分作用素 / 無限次元表現 / hypergeometric equations / Verma modules / Torasso's representation / small representations Less
  • Research Projects

    (4 results)
  • Research Products

    (17 results)
  • Co-Researchers

    (2 People)
  •  Construction and classification of symmetry breaking operatorsPrincipal Investigator

    • Principal Investigator
      久保 利久
    • Project Period (FY)
      2024 – 2025
    • Research Category
      Grant-in-Aid for JSPS Fellows
    • Review Section
      Basic Section 12010:Basic analysis-related
    • Research Institution
      Ryukoku University
  •  絡微分作用素の解空間上に実現される表現の研究Principal Investigator

    • Principal Investigator
      久保 利久
    • Project Period (FY)
      2022 – 2025
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 12010:Basic analysis-related
    • Research Institution
      Ryukoku University
  •  The study of differential symmetry breaking operators and minimal representations from an analytic point of viewPrincipal Investigator

    • Principal Investigator
      Kubo Toshihisa
    • Project Period (FY)
      2018 – 2022
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 12010:Basic analysis-related
    • Research Institution
      Ryukoku University
  •  Constructions of analytic models of small representaionsPrincipal Investigator

    • Principal Investigator
      Kubo Toshihisa
    • Project Period (FY)
      2014 – 2016
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Basic analysis
    • Research Institution
      Ryukoku University
      The University of Tokyo

All 2023 2022 2021 2020 2019 2017 2016

All Journal Article Presentation

  • [Journal Article] F-methodにおける絡微分作用素の分類および構成について2022

    • Author(s)
      久保利久
    • Journal Title

      2022年表現シンポジウム講演集

      Volume: 1 Pages: 41-66

    • Open Access
    • Data Source
      KAKENHI-PROJECT-22K03362
  • [Presentation] On the classification and construction of projectively covariant differential operators on RP^22023

    • Author(s)
      久保利久
    • Organizer
      7th Tunisian-Japanese Conference
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K03362
  • [Presentation] F-methodにおける絡微分作用素の分類および構成について2022

    • Author(s)
      久保利久
    • Organizer
      2022年度表現論シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-22K03362
  • [Presentation] On the classification of the K-type formulas for the Heisenberg ultrahyperbolic equation2022

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Representation Theory Workshop 2021
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] On the classification of the K-type formulas for the Heisenberg ultrahyperbolic equation2021

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Lie Group and Representation Theory Seminar
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] Palindromic property of Cayley continuants {Cay_k(x;n)}2021

    • Author(s)
      Toshihisa Kubo
    • Organizer
      MSJ Spring Meeting 2021
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] Palindromic property of a sequence of polynomials2021

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Representation Theory Workshop
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] Classification of the K-type formulas for a certain second order differential equation2021

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Langlands and Harmonic Analysis
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] A Peter-Weyl type decomposition theorem for intertwining differential operators and its application2020

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Seminar in Aarhus University, Denmark
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] The K-type formulas for Kable's differential operators of type A_3 and Heun polynomials2020

    • Author(s)
      Toshihisa Kubo
    • Organizer
      MSJ Spring Meeting 2020
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] On the zeros of the Sylvester determinant and Jacobi weight function2020

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Representation theory workshop 2020
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] On the Peter-Weyl type decomposition theorem for the space of K-finite solutions to intertwining differential operators2019

    • Author(s)
      久保 利久
    • Organizer
      日本数学会2019年度年会
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] Kable's Heisenberg ultrahyperbolic operator and hypergeometric polynomials2019

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Second International Conference on Applications of Mathematics to Nonlinear Sciences (AMNS-2019), Nepal
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] Sylvester-type determinant formulas and Huen polynomials2019

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Seminar in Kyushu University
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] Factorization formulas for certain tridiagonal determinants2019

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Ryukoku seminar
    • Data Source
      KAKENHI-PROJECT-18K13432
  • [Presentation] Verma modules and intertwining differential operators2017

    • Author(s)
      久保利久
    • Organizer
      Langlands and Harmonic Analysis
    • Place of Presentation
      熱海
    • Year and Date
      2017-02-07
    • Invited
    • Data Source
      KAKENHI-PROJECT-26800052
  • [Presentation] On a construction of unipotent representations of the universal covering group of SL(3,R)2016

    • Author(s)
      久保利久
    • Organizer
      青山表現論セミナー
    • Place of Presentation
      青山学院大学
    • Year and Date
      2016-12-16
    • Invited
    • Data Source
      KAKENHI-PROJECT-26800052
  • 1.  ØRSTED Bent
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  PEREZ VALDES VICTOR
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi