• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

UMEHARA Kensuke  梅原 健輔

ORCIDConnect your ORCID iD *help
… Alternative Names

Umehara Kensuke  梅原 健輔

Less
Researcher Number 90825077
Other IDs
Affiliation (Current) 2025: 国立研究開発法人量子科学技術研究開発機構, QST病院 医療技術部, 主任研究員
2025: 国立研究開発法人量子科学技術研究開発機構, QST病院, 主任研究員
Affiliation (based on the past Project Information) *help 2021 – 2023: 国立研究開発法人量子科学技術研究開発機構, QST病院, 主任研究員
2019 – 2020: 国立研究開発法人量子科学技術研究開発機構, QST病院, 研究員(定常)
2018: 国立研究開発法人量子科学技術研究開発機構, 放射線医学総合研究所病院, 研究員(定常)
Review Section/Research Field
Principal Investigator
Basic Section 52040:Radiological sciences-related / 0902:General internal medicine and related fields
Except Principal Investigator
Basic Section 52040:Radiological sciences-related
Keywords
Principal Investigator
超解像 / AIイメージング / MRI / Radiomics / 深層学習 / 敵対的生成ネットワーク / Super-Resolution / Transformer / トランスフォーマー / 機械学習 … More / 医学物理学 / 放射線技術学 / 医用画像処理 / 画像変換 / ノイズ除去 / compressed sensing / GAN / 圧縮センシング / 高速撮像 / Deep Learning / 人工知能 / ディープラーニング / 畳み込みニューラルネットワーク / AI / 胸部CT / 重粒子線治療 … More
Except Principal Investigator
時間分解能 / 人工知能 / 画像処理 / 心臓CT Less
  • Research Projects

    (4 results)
  • Research Products

    (17 results)
  • Co-Researchers

    (4 People)
  •  Augmented Intelligence for Breaking the "50 Millisecond Barrier" of Temporal Resolution in Cardiac CT Imaging

    • Principal Investigator
      西井 達矢
    • Project Period (FY)
      2023 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 52040:Radiological sciences-related
    • Research Institution
      National Cardiovascular Center Research Institute
  •  Transformer-empowered medical AI imaging: a proof-of-concept studyPrincipal Investigator

    • Principal Investigator
      梅原 健輔
    • Project Period (FY)
      2022 – 2025
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 52040:Radiological sciences-related
    • Research Institution
      National Institutes for Quantum Science and Technology
  •  A Feasibility Study of AI-driven Imaging for Ultra-Fast MRIPrincipal Investigator

    • Principal Investigator
      Umehara Kensuke
    • Project Period (FY)
      2019 – 2022
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 52040:Radiological sciences-related
    • Research Institution
      National Institutes for Quantum Science and Technology
  •  Artificial intelligence aided clinical decision support system for heavy-ion radiotherapy in non-small cell lung cancerPrincipal Investigator

    • Principal Investigator
      梅原 健輔
    • Project Period (FY)
      2018 – 2019
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Review Section
      0902:General internal medicine and related fields
    • Research Institution
      National Institutes for Quantum and Radiological Science and Technology

All 2024 2023 2022 2020 2019 2018

All Journal Article Presentation

  • [Journal Article] RSNA Certificate of Merit受賞報告(「Beyond the Hype: The Power of GANs in Restoring MRI Texture(「ハイプ」を超えて:MRIのテクスチャ復元におけるGANの威力)」)2024

    • Author(s)
      梅原健輔
    • Journal Title

      月間インナービジョン

      Volume: 39(2) Pages: 68-69

    • Data Source
      KAKENHI-PROJECT-22K15853
  • [Journal Article] RSNA Award Report「Beyond the Hype: The Power of GANs in Restoring MRI Texture(「ハイプ」を超えて:MRIのテクスチャ復元におけるGANの威力)」2024

    • Author(s)
      梅原健輔
    • Journal Title

      Rad Fan

      Volume: 22(2) Pages: 97-99

    • Data Source
      KAKENHI-PROJECT-22K15853
  • [Journal Article] Generative adversarial network-based post-processed image super-resolution technology for accelerating brain MRI: comparison with compressed sensing2022

    • Author(s)
      Ueki Wataru、Nishii Tatsuya、Umehara Kensuke、Ota Junko、Higuchi Satoshi、Ohta Yasutoshi、Nagai Yasuhiro、Murakawa Keizo、Ishida Takayuki、Fukuda Tetsuya
    • Journal Title

      Acta Radiologica

      Volume: 64 Issue: 1 Pages: 336-345

    • DOI

      10.1177/02841851221076330

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K17250
  • [Journal Article] AI イメージングによる超高速撮像 MRI: 最新技術レビューとProof of Concept2020

    • Author(s)
      梅原健輔
    • Journal Title

      Rad Fan

      Volume: 18(2) Pages: 47-49

    • Data Source
      KAKENHI-PROJECT-19K17250
  • [Journal Article] 1. Deep Learning Super-resolution in Medical Imaging: What Is It and How to Use It2020

    • Author(s)
      梅原健輔
    • Journal Title

      Japanese Journal of Radiological Technology

      Volume: 76 Issue: 5 Pages: 524-533

    • DOI

      10.6009/jjrt.2020_JSRT_76.5.524

    • NAID

      130007844465

    • ISSN
      0369-4305, 1881-4883
    • Language
      Japanese
    • Data Source
      KAKENHI-PROJECT-19K17250
  • [Journal Article] AI イメージングによる超高速撮像 MRI: 最新技術レビューとProof of Concept2020

    • Author(s)
      梅原健輔
    • Journal Title

      月刊インナービジョン

      Volume: 35(2) Pages: 43-43

    • Data Source
      KAKENHI-PROJECT-19K17250
  • [Journal Article] Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT2018

    • Author(s)
      Umehara Kensuke、Ota Junko、Ishida Takayuki
    • Journal Title

      Journal of Digital Imaging

      Volume: 31 Issue: 4 Pages: 441-450

    • DOI

      10.1007/s10278-017-0033-z

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18H06205
  • [Journal Article] Sparse Coding Super-Resolution Scheme for Chest Computed Tomography2018

    • Author(s)
      Ota Junko、Umehara Kensuke、Ishimaru Naoki、Ohno Shunsuke、Okamoto Kentaro、Suzuki Takanori、Ishida Takayuki
    • Journal Title

      Journal of Medical Imaging and Health Informatics

      Volume: 8 Issue: 5 Pages: 1043-1050

    • DOI

      10.1166/jmihi.2018.2399

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18H06205
  • [Journal Article] MRI画像に対するスパースコーディング超解像処理の有用性2018

    • Author(s)
      石丸 直樹、大田 淳子、梅原 健輔、鈴木 崇師、大野 隼輔、岡本 健太郎、石田 隆行
    • Journal Title

      Medical Imaging Technology

      Volume: 36 Pages: 196-202

    • NAID

      130007496357

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18H06205
  • [Presentation] Twinkling T2 STAR: Robust Radiomics Features for Reliable Cerebral Microbleed Identification2023

    • Author(s)
      Hiroki Nakajima, Ryogo Enoki, Tatsuya Nishii, Kensuke Umehara, Junko Ota, Yoshihiro Nagai, Yasutoshi Ohta, Keizo Murakawa, Tetsuya Fukuda
    • Organizer
      RSNA2023 109th Scientific Assembly and Annual Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K15853
  • [Presentation] Beyond the Hype: The Power of GANs in Restoring MRI Texture2023

    • Author(s)
      Kensuke Umehara, Tatsuya Nishii, Junko Ota, Ryogo Enoki, Yasutoshi Ohta, Tetsuya Fukuda, Hisateru Ohba, Takayuki Obata
    • Organizer
      RSNA2023 109th Scientific Assembly and Annual Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K15853
  • [Presentation] AIイメージングは新たなモダリティになり得るか:現状と将来展望2020

    • Author(s)
      梅原健輔
    • Organizer
      第76回日本放射線技術学会総会学術大会(JRC2020web)
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K17250
  • [Presentation] 放射線医学におけるAIイメージング2020

    • Author(s)
      梅原健輔
    • Organizer
      日本光学会 第4回AI Optics研究会~AIとイメージング~
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K17250
  • [Presentation] Accelerating Brain MRI Using Generative Adversarial Network Based Image Super-Resolution Technology: Comparison with Compressed Sensing2020

    • Author(s)
      Wataru Ueki, Tatsuya Nishii, Kensuke Umehara, Junko Ota, Yuki Kittaka, Satoshi Higuchi, Yasutoshi Ohta, Yasuhiro Nagai, Keizo Murakawa, Takayuki Ishida, Tetsuya Fukuda
    • Organizer
      RSNA 2020 106th Scientific Assembly and Annual Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K17250
  • [Presentation] Artificial Intelligence-Driven Imaging for Ultra-Fast MRI: Cutting-Edge Technology and Clinical Application2019

    • Author(s)
      Kensuke Umehara, Tatsuya Nishii, Junko Ota, Naoki Ishimaru, Wataru Ueki, Hisateru Ohba, Takayuki Obata, Tetsuya Fukuda, Takayuki Ishida
    • Organizer
      RSNA2019 105th Scientific Assembly and Annual Meeting
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K17250
  • [Presentation] Image super-resolution using generative adversarial networks for accelerating MRI: Image quality analysis of the volunteer MRI2019

    • Author(s)
      Wataru Ueki, Tatsuya Nishii, Hirotsugu Ida, Masaru Shiotani, Tatsuhiro Yamamoto, Yasutoshi Ohta, Kensuke Umehara, Junko Ota, Yasuhiro Nagai, Takayuki Ishida, Tetsuya Fukuda
    • Organizer
      第47回日本磁気共鳴医学会大会
    • Data Source
      KAKENHI-PROJECT-19K17250
  • [Presentation] 敵対的生成ネットワークを用いたAIイメージングによるMRI高速撮像の基礎的検討2019

    • Author(s)
      梅原健輔, 西井達矢, 大田淳子, 植木渉, 大場久照, 小畠隆行, 福田哲也, 石田隆行
    • Organizer
      第47回日本放射線技術学会秋季学術大会
    • Data Source
      KAKENHI-PROJECT-19K17250
  • 1.  西井 達矢 (20749345)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  河野 淳 (20574388)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  太田 靖利 (90388570)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  大田 淳子 (90825001)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi