• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Katsuta Yoshiyuki  勝田 義之

ORCIDConnect your ORCID iD *help
Researcher Number 90848326
Other IDs
Affiliation (Current) 2025: 東北大学, 大学病院, 助教
Affiliation (based on the past Project Information) *help 2020 – 2024: 東北大学, 大学病院, 助教
Review Section/Research Field
Principal Investigator
Basic Section 52040:Radiological sciences-related
Keywords
Principal Investigator
人工知能 / 肺炎 / 放射線治療 / 放射線肺臓炎 / 肺がん / 放射線誘発性肺炎 / 機械学習
  • Research Projects

    (2 results)
  • Research Products

    (8 results)
  •  Displaying lung tissues that introduces radiation pneumonitis by irradiationPrincipal Investigator

    • Principal Investigator
      勝田 義之
    • Project Period (FY)
      2024 – 2027
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 52040:Radiological sciences-related
    • Research Institution
      Tohoku University
  •  Prediction of radiation pneumonitis with machine learning using dose-volume and dose-function featuresPrincipal Investigator

    • Principal Investigator
      Katsuta Yoshiyuki
    • Project Period (FY)
      2020 – 2023
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 52040:Radiological sciences-related
    • Research Institution
      Tohoku University

All 2023 2022 2021 2020

All Journal Article Presentation Patent

  • [Journal Article] Radiation pneumonitis prediction model with integrating multiple dose-function features on 4DCT ventilation images2023

    • Author(s)
      Yoshiyuki Katsuta et al.
    • Journal Title

      Physica Medica

      Volume: 105 Pages: 102505-102505

    • DOI

      10.1016/j.ejmp.2022.11.009

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20K16815, KAKENHI-PROJECT-20H03624
  • [Journal Article] Feasibility of Differential Dose Volume Histogram Features in Multivariate Prediction Model for Radiation Pneumonitis Occurrence2022

    • Author(s)
      Yoshiyuki Katsuta et al.
    • Journal Title

      Diagnostics

      Volume: 12 Issue: 6 Pages: 1354-1354

    • DOI

      10.3390/diagnostics12061354

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20K16815
  • [Journal Article] Prediction of radiation pneumonitis with machine learning using 4D-CT based dose-function features2021

    • Author(s)
      Katsuta Yoshiyuki、Kadoya Noriyuki、Mouri Shina、Tanaka Shohei、Kanai Takayuki、Takeda Kazuya、Yamamoto Takaya、Ito Kengo、Kajikawa Tomohiro、Nakajima Yujiro、Jingu Keiichi
    • Journal Title

      Journal of Radiation Research

      Volume: 63 Issue: 1 Pages: 71-79

    • DOI

      10.1093/jrr/rrab097

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K16815
  • [Patent] 放射線誘発性肺炎を誘発する肺組織を抽出する技術2023

    • Inventor(s)
      勝田義之
    • Industrial Property Rights Holder
      東北大学
    • Industrial Property Rights Type
      特許
    • Filing Date
      2023
    • Data Source
      KAKENHI-PROJECT-20K16815
  • [Presentation] 複数の放射線生物影響数理モデルによる放射線肺臓炎の予測2021

    • Author(s)
      勝田義之 他
    • Organizer
      日本放射線腫瘍学会第34回学術大会
    • Data Source
      KAKENHI-PROJECT-20K16815
  • [Presentation] Evaluation of machine learning-based prediction model with combination of conventional and functional dosimetric parameters for radiation pneumonitis in NSCLC patients2021

    • Author(s)
      Mouri S, Kadoya N, Katsuta Y et al.
    • Organizer
      日本医学物理学会第121回学術大会
    • Data Source
      KAKENHI-PROJECT-20K16815
  • [Presentation] Development of machine learning-based radiation pneumonitis prediction model with combination of conventional, functional dosimetric parameters and clinical factors in NSCLC patients2021

    • Author(s)
      Mouri S, Kadoya N, Katsuta Y et al.
    • Organizer
      日本医学物理学会第122回学術大会
    • Data Source
      KAKENHI-PROJECT-20K16815
  • [Presentation] Evaluation of machine learning-based prediction model for radiation pneumonitis in NSCLC patients2020

    • Author(s)
      Mouri S, Kadoya N, Katsuta Y, Kanai T, Nakajima Y, Tanabe S, Sugai Y, Umeda M, Dobashi S, Takeda K, Jingu K
    • Organizer
      20th Asia-Oceania Congress of Medical Physics
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K16815

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi