• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Unregistered Unregistered  伊藤 要平

ORCIDConnect your ORCID iD *help
… Alternative Names

Ito Yohei  伊藤 要平

Less
Researcher Number 90909409
Affiliation (Current) 2025: 東京大学, 大学院数理科学研究科, 協力研究員
Affiliation (based on the past Project Information) *help 2025: 東京大学, 大学院数理科学研究科, 協力研究員
2021 – 2023: 東京理科大学, 理学部第二部数学科, 助教
Review Section/Research Field
Principal Investigator
Basic Section 11010:Algebra-related / 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Keywords
Principal Investigator
Riemann-Hilbert対応 / D加群 / 代数解析学 / algebraic analysis / D-module / リーマン・ヒルベルト対応
  • Research Projects

    (3 results)
  • Research Products

    (2 results)
  •  Irregular Riemann-Hilbert correspondence and its applicationsPrincipal Investigator

    • Principal Investigator
      伊藤 要平
    • Project Period (FY)
      2025 – 2027
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      The University of Tokyo
  •  "Stokes filtration"を用いた複素構成可能拡大帰納層の特徴付けPrincipal Investigator

    • Principal Investigator
      伊藤 要平
    • Project Period (FY)
      2022 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Tokyo University of Science
  •  Riemann-Hilbert correspondence for holonomic D-modules and its applicationPrincipal Investigator

    • Principal Investigator
      Ito Yohei
    • Project Period (FY)
      2021 – 2022
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Review Section
      0201:Algebra, geometry, analysis, applied mathematics,and related fields
    • Research Institution
      Tokyo University of Science

All 2024 2023

All Presentation

  • [Presentation] 不確定特異点型Riemann-Hilbert対応と拡大副解析層2024

    • Author(s)
      伊藤要平
    • Organizer
      パンルヴェ方程式の幾何学とその周辺
    • Data Source
      KAKENHI-PROJECT-22K13902
  • [Presentation] Irregular Riemann-Hilbert Correspondence and Enhanced Subanalytic Sheaves2023

    • Author(s)
      Yohei Ito
    • Organizer
      7th Tunisian-Japanese Conference Geometric and Harmonic Analysis on Homogeneous Spaces and Applications ~in Honor of Professor Toshiyuki Kobayashi~
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K13902

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi