Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Disk-driven rotating bipolar outflow in Orion Source I

Abstract

One of the outstanding problems in star formation theory concerns the transfer of angular momentum so that mass can accrete onto a newly born young stellar object (YSO). From a theoretical standpoint, outflows and jets are predicted to play an essential role in the transfer of angular momentum1,2,3,4 and their rotations have been reported for both low-5 and high-mass6,7 YSOs. However, little quantitative discussion on outflow launching mechanisms has been presented for high-mass YSOs due to a lack of observational data. Here we present a clear signature of rotation in the bipolar outflow driven by Orion Source I, a high-mass YSO candidate, using the Atacama Large Millimeter/Submillimeter Array (ALMA). A rotational transition of silicon monoxide (Si18O) reveals a velocity gradient perpendicular to the outflow axis, which is consistent with that of the circumstellar disk traced by a high excitation water line. The launching radii and outward velocity of the outflow are estimated to be >10 au and 10 km s−1, respectively. These parameters rule out the possibility that the observed outflow is produced by the entrainment of a high-velocity jet8, and that contributions from the stellar wind9 or X-wind10, which have smaller launching radii, are significant in the case of Source I. Thus these results provide convincing evidence of a rotating outflow directly driven by the magneto-centrifugal disk wind launched by a high-mass YSO candidate6,11.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Moment maps of the observed lines and continuum emissions.
Figure 2: Position–velocity diagrams parallel to the disk mid-plane.
Figure 3: Derived outflow parameters from position–velocity diagrams of the 484 GHz Si18O line.

Similar content being viewed by others

References

  1. Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982).

    Article  ADS  Google Scholar 

  2. Tomisaka, K. The evolution of the angular momentum distribution during star formation. Astrophys. J. Lett. 528, L41–L44 (2000).

    Article  ADS  Google Scholar 

  3. Pudritz, R. E., Ouyed, R., Fendt, C. & Brandenburg, A. in Protostars and Planets V (eds Reipurth, B. et al. ) 277–294 (Univ. Arizona Press, 2007).

    Google Scholar 

  4. Machida, M. N. Protostellar jets enclosed by low-velocity outflows. Astrophys. J. Lett. 796, L17 (2014).

    Article  ADS  Google Scholar 

  5. Belloche, A. in Role and Mechanisms of Angular Momentum Transport During the Formation and Early Evolution of Stars (eds Hennebelle, P. & Charbonnel, C. ) 25–66 (EAS Publications Series, EDP Sciences, 2013).

    Google Scholar 

  6. Greenhill, L. J., Goddi, C., Chandler, C. J., Matthews, L. D. & Humphreys, E. M. L. Dynamical evidence for a magnetocentrifugal wind from a 20 M binary young stellar object. Astrophys. J. Lett. 770, L32 (2013).

    Article  ADS  Google Scholar 

  7. Burns, R. A. et al. A ‘water spout’ maser jet in S235AB-MIR. Mon. Not. R. Astron. Soc. 453, 3163–3173 (2015).

    Article  ADS  Google Scholar 

  8. Arce, H. G. et al. in Protostars and Planets V (eds Reipurth, B. et al. ) 245–260 (Univ. Arizona Press, 2007).

    Google Scholar 

  9. Bouvier, J. et al. in Protostars and Planets VI (eds Beuther, H. et al. ) 433–450 (Univ. Arizona Press, 2014).

    Google Scholar 

  10. Shu, F. et al. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model. Astrophys. J. 429, 781–796 (1994).

    Article  ADS  Google Scholar 

  11. Matthews, L. D. et al. A feature movie of SiO emission 20–100 au from the massive young stellar object Orion Source I. Astrophys. J. 708, 80–92 (2010).

    Article  ADS  Google Scholar 

  12. Kim, M. K. et al. SiO maser observations toward Orion-KL with VERA. Publ. Astron. Soc. Jpn 60, 991–999 (2008).

    Article  ADS  Google Scholar 

  13. Menten, K. M. & Reid, M. J. What is powering the Orion Kleinmann-Low infrared nebula? Astrophys. J. Lett. 445, L157–L160 (1995).

    Article  ADS  Google Scholar 

  14. Reid, M. J., Menten, K. M., Greenhill, L. J. & Chandler, C. J. Imaging the ionized disk of the high-mass protostar Orion I. Astrophys. J. 664, 950–955 (2007).

    Article  ADS  Google Scholar 

  15. Testi, L., Tan, J. C. & Palla, F. The near-infrared reflected spectrum of Source I in Orion-KL. Astron. Astrophys. 522, A44 (2010).

    Article  ADS  Google Scholar 

  16. Plambeck, R. L. et al. Tracing the bipolar outflow from Orion Source I. Astrophys. J. Lett. 704, L25–L28 (2009).

    Article  ADS  Google Scholar 

  17. Zapata, L. A. et al. ALMA observations of the outflow from Source I in the Orion-KL region. Astrophys. J. Lett. 754, L17 (2012).

    Article  ADS  Google Scholar 

  18. Hirota, T., Kim, M. K. & Honma, M. The first detection of the 232 GHz vibrationally excited H2O maser in Orion KL with ALMA. Astrophys. J. Lett. 757, L1 (2012).

    Article  ADS  Google Scholar 

  19. Hirota, T., Kim, M. K., Kurono, Y. & Honma, M. A hot molecular circumstellar disk around the massive protostar Orion Source I. Astrophys. J. Lett. 782, L28 (2014).

    Article  ADS  Google Scholar 

  20. Hirota, T., Kim, M. K. & Honma, M. ALMA observation of the 658 GHz vibrationally excited H2O maser in Orion KL Source I. Astrophys. J. 817, 168 (2016).

    Article  ADS  Google Scholar 

  21. Plambeck, R. L. & Wright, M. C. H. ALMA observations of Orion Source I at 350 and 660 GHz. Astrophys. J. 833, 219 (2016).

    Article  ADS  Google Scholar 

  22. Hirota, T. et al. ALMA band 8 continuum emission from Orion Source I. Astrophys. J. 833, 238 (2016).

    Article  ADS  Google Scholar 

  23. Goddi, C., Humphreys, E. M. L., Greenhill, L. J., Chandler, C. J. & Matthews, L. D. A multi-epoch study of the radio continuum emission of Orion Source. I. Constraints on the disk evolution of a massive YSO and the dynamical history of Orion BN/KL. Astrophys. J. 728, 15 (2011).

    Article  ADS  Google Scholar 

  24. Tercero, B., Vincent, L., Cernicharo, J., Viti, S. & Marcelino, N. A line-confusion limited millimeter survey of Orion KL. II. Silicon-bearing species. Astron. Astrophys. 528, A26 (2011).

    Article  Google Scholar 

  25. Bjerkeli, P., van der Wiel, M. H. D., Harsono, D., Ramsey, J. P. & Jorgensen, J. K. Resolved images of a protostellar outflow driven by an extended disk wind. Nature 540, 406–409 (2016).

    Article  ADS  Google Scholar 

  26. Anderson, J. M., Li, Z.-Y., Krasnopolsky, R. & Blandford, R. D. Locating the launching region of T Tauri winds: the case of DG Tauri. Astrophys. J. Lett. 590, L107–L110 (2003).

    Article  ADS  Google Scholar 

  27. Bally, J. et al. Explosive outflows powered by the decay of non-hierarchical multiple systems of massive stars: Orion BN/KL. Astrophys. J. 727, 113 (2011).

    Article  ADS  Google Scholar 

  28. Zapata, L. A., Schmid-Burgk, J., Ho, P. T. P., Rodríguez, L. F. & Menten, K. M. Explosive disintegration of a massive young stellar system in Orion. Astrophys. J. Lett. 704, L45–L48 (2009).

    Article  Google Scholar 

  29. Chatterjee, S. & Tan, J. C. Gravitational slingshot of young massive stars in Orion. Astrophys. J. 754, 152 (2012).

    Article  ADS  Google Scholar 

  30. Machida, M. N., Inutsuka, S.-I. & Matsumoto, T. The circumbinary outflow: a protostellar outflow driven by a circumbinary disk. Astrophys. J. Lett. 704, L10–L14 (2009).

    Article  ADS  Google Scholar 

  31. Müller, H. S. P., Schlöder, F., Stutzki, J. & Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Molec. Struct. 742, 215–227 (2005).

    Article  ADS  Google Scholar 

  32. Pickett, H. M. et al. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to R.L. Plambeck, Y. Oya, N. Sakai and S. Yamamoto for valuable discussions. The ALMA is a partnership of the European Southern Observatory (representing its member states), the National Science Foundation (USA) and the National Institutes of Natural Sciences (Japan), together with the National Research Council Canada, National Science Council of Taiwan and Academia Sinica Institute of Astronomy and Astrophysics (Taiwan) and the Korea Astronomy and Space Science Institute (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by the European Southern Observatory, Associated Universities Inc. (AUI)/National Radio Astronomy Observatory and the National Astronomical Observatory of Japan (NAOJ). We thank the staff at ALMA for making the observations and reducing the data. T.H. is supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT)/Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers 21224002, 24684011, 25108005 and 15H03646 and the ALMA Japan Research Grant of the NAOJ Chile Observatory, NAOJ-ALMA-0006, -0028 and -0066. M.N.M. is supported by MEXT/JSPS KAKENHI grant numbers 15K05032 and 17K05387. K.M. is supported by MEXT/JSPS KAKENHI grant number 15K17613. M.H. is supported by MEXT/JSPS KAKENHI grant numbers 24540242 and 25120007. Data analyses were in part carried out on the common use data analysis computer system at the Astronomy Data Center, NAOJ.

Author information

Authors and Affiliations

Authors

Contributions

T.H. led the project as a principal investigator of the ALMA observations and performed the data analysis. M.N.M. and Y.M. interpreted the ALMA results from the theoretical point of view. K.M. analysed part of the ALMA data and checked the results. N.M., M.K.K., R.A.B. and M.H. contributed to writing the paper. All the authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Tomoya Hirota.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–5 (PDF 568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirota, T., Machida, M., Matsushita, Y. et al. Disk-driven rotating bipolar outflow in Orion Source I. Nat Astron 1, 0146 (2017). https://doi.org/10.1038/s41550-017-0146

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing