Skip to main content
Log in

Inducible growth mode switches influence Valonia rhizoid differentiation

Protoplasma Aims and scope Submit manuscript

Abstract

Cell differentiation and cell type commitment are an integral part of plant growth and development. Investigations on how environmental conditions affect the formation of shoots, roots, and rhizoids can help illustrate how plants determine cell fate and overall morphology. In this study, we evaluated the role of substratum and light on rhizoid differentiation in the coenocytic green alga, Valonia aegagropila. Elongating rhizoids displayed varying growth modes and cell shape upon exposure to different substrata and light conditions. It was found that soft substrata and dark incubation promoted rhizoid elongation via tip growth while subsequent exposure to light prevented tip growth and instead induced swelling in the apical region of rhizoids. Swelling was accompanied by the accumulation of protoplasm in the rhizoid tip through expansion of the cell wall and uninhibited cytoplasmic streaming. Subsequent diffuse growth led to the transformation from slender, rod-shaped rhizoids into spherical thallus-like structures that required photosynthesis. Further manipulation of light regimes caused vacillating cell growth redirections. An elongating V. aegagropila rhizoid cell thus appears capable of growth mode switching that is regulated by immediate environmental conditions thereby influencing ultimate cell shape and function. This is the first description of inducible, multiple growth mode shifts in a single intact plant cell that directly impact its differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Basu S, Sun H, Brian L, Quatrano RL, Muday GK (2002) Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol 130:292–302

    Article  PubMed  CAS  Google Scholar 

  • Berger F, Taylor A, Brownlee C (1994) Cell fate determination by the cell wall in early Fucus development. Science 263:1421–1423

    Article  PubMed  CAS  Google Scholar 

  • Bold H, Wynne MJ (1985) Introduction to the algae. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Bouget F, Berger F, Brownlee C (1998) Position dependent control of cell fate in the Fucus embryo: role of intercellular communication. Development 125:1999–2008

    PubMed  CAS  Google Scholar 

  • Chihara M (1959) Studies on the life history of the green algae in the warm seas around Japan (9). Supplementary note on the life history of Valonia macrophysa Kutz. J Jpn Bot 34:257–268

    Google Scholar 

  • Cooke TJ, Poli DB, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    Article  PubMed  CAS  Google Scholar 

  • Dazy AC, Puiseux-Dao S, Borghi H (1989) The effects of blue and red light on Acetabularia mediterranea after long exposure to darkness. Biol Cell 67:227–234

    Google Scholar 

  • Elvira PR, Sekida S, Okuda K (2012) Rhizoid formation in Valonia (Siphonocladales, Chlorophyceae). Phycologia

  • Flores HE, Dai Y, Cuello JL, Maldonado-Mendoza IE, Loyola-Vargas VM (1993) Green roots: photosynthesis and photoautotrophy in an underground plant organ. Plant Physiol 101:363–371

    PubMed  CAS  Google Scholar 

  • Fritsch FE (1935) The structure and reproduction of the alga. Cambridge Univ Press, London

    Google Scholar 

  • Grafi G, Chalifa-Caspi V, Nagar T, Plaschkes I, Barak S, Ransbotyn V (2011) Plant response to stress meets dedifferentiation. Planta 233:433–438

    Article  PubMed  CAS  Google Scholar 

  • Gull K, Trinci APJ (1974) Detection of areas of wall differentiation in fungi using fluorescent staining. Arch Microbiol 96:53–57

    Article  CAS  Google Scholar 

  • Harold FM (2002) Force and compliance: rethinking morphogenesis in walled cells. Fungal Gen Biol 37:271–282

    Article  CAS  Google Scholar 

  • Hughes J, McCully ME (1975) The use of an optical brightener in the study of plant structure. Stain Technol 50:319–329

    PubMed  CAS  Google Scholar 

  • Inoue N, Yamada S, Nagata Y, Shimmen T (2002) Rhizoid differentiation in Spirogyra: position sensing by terminal cells. Plant Cell Physiol 43:479–483

    Article  PubMed  CAS  Google Scholar 

  • Jacobs WP (1951) Studies on cell differentiation: the role of auxin in algae, with particular reference to rhizoid-formation in Bryopsis. Biol Bull 101:300–306

    Article  CAS  Google Scholar 

  • Jacobs WP, Falkenstein K, Hamilton RH (1985) Nature and amount of auxin in algae. IAA from extracts of Caulerpa paspaloides (Siphonales). Plant Physiol 78:844–848

    Article  PubMed  CAS  Google Scholar 

  • Jang G, Yi K, Pires ND, Menand B, Dolan L (2011) RSL genes are sufficient for rhizoid system development in early diverging land plants. Development 138(11):2273–2281

    Article  PubMed  CAS  Google Scholar 

  • Johri MM (2008) Hormonal regulation in green plant lineage families. Physiol Mol Biol Plants 14(1–2):23–38

    Article  CAS  Google Scholar 

  • Kamiya N (1986) Cytoplasmic streaming in giant algal cells: a historical survey of experimental approaches. Bot Mag Tokyo 99:441–467

    Article  CAS  Google Scholar 

  • Kanda T (1940) Studies on the genus Valonia from Palao. Kagaku Nanyo 3:23–32

    Google Scholar 

  • Kawai H, Motomura T, Okuda K (2005) Isolation and purification techniques for macroalgae. In: Andersen A (ed) Algal culture techniques. Elsevier, Amsterdam, pp 133–143

    Google Scholar 

  • Klambt D, Knauth B, Dittmann I (1992) Auxin dependent growth of rhizoids of Chara globularis. Physiol Planta 85:537–540

    Article  Google Scholar 

  • Kropf DL, Bisgrove SR, Hable WE (1998) Cytoskeletal control of polar growth in plant cells. Curr Opin Plant Biol 10:117–122

    Article  CAS  Google Scholar 

  • Maclean N, Hall BK (1987) Cell commitment and differentiation. Cambridge University Press, London

    Google Scholar 

  • Martin C, Bhatt K, Baumann K (2001) Shaping in plant cells. Curr Opin Plant Biol 4:540–549

    Article  PubMed  CAS  Google Scholar 

  • Mathur J (2006) Local interactions shape plant cells. Curr Opin Cell Biol 18:40–46

    Article  PubMed  CAS  Google Scholar 

  • Metz JG, Pakrasi HB, Seibert M, Arntzen CJ (1986) Evidence for a dual function of the herbicide-binding D1 protein in photosystem II. FEBS 205:269–274

    Article  CAS  Google Scholar 

  • Mine I, Menzel D, Okuda K (2008) Morphogenesis in giant-celled algae. Intl Rev Cell Mol Biol 266:37–83

    Article  CAS  Google Scholar 

  • Okuda K, Ueno S, Mine I (1997) Cytomorphogenesis in coenocytic green algae. IV. The construction of cortical microtubules during lenticular cell formation in Valonia utricularis. Mem Fac Sci Kochi Univ Ser D 18:17–25

    Google Scholar 

  • Olsen JL, West JA (1988) Ventricaria (Siphonocladales-Cladophorales complex, Chlorophyta), a new genus for Valonia ventricosa. Phycologia 27:103–108

    Article  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Proceedings of the US-Japan Conference, Hakone, September 1966. Japanese Society of Plant Physiologists, Japan, pp 63–75

    Google Scholar 

  • Saavedra L, Balbi V, Lerche J, Mikami K, Heilmann I, Sommarin M (2011) PIPKs are essential for rhizoid elongation and caulonemal cell development in the moss Physcomitrella patens. Plant J 67:635–647

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara K, Nishiyama T, Sumikawa N, Kofuji R, Murata T, Hasebe M (2003) Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. Development 130:4835–4846

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Ann Rev Cell Dev Biol 21:271–295

    Article  CAS  Google Scholar 

  • Steer MW, Steer JM (1989) Pollen tube growth. New Phytol 111:323–358

    Article  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Gordon SP, Meyerowitz EM (2011) Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21:212–218

    Article  PubMed  CAS  Google Scholar 

  • Waaland SD, Watson BA (1980) Isolation of a cell-fusion hormone from Griffithsia pacifica Kylin, a red alga. Planta 149:493–497

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ichiro Mine of Kochi University, Japan, for technical suggestions. This study was supported by the “Monbukagakusho,” Ministry of Education, Science, Sports, and Culture, Japanese Government, as part of doctoral research of P.R.E.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rommel Elvira.

Additional information

Handling Editor: Tsuneyoshi Kuroiwa

Supplementary material

Below is the link to the electronic supplementary material.

Formation of a bulb-tipped rhizoid from a rod-shaped V. aegagropila rhizoid and subsequent resumption of tip growth. A cell was incubated in darkness for 14 days at 22°C then exposed to 96 h continuous light at 40 μmol photons m−2 s−1 and then 24 h of continuous light at 10 μmol photons m−2 s−1. Photomicrographs were taken at 10-min intervals (MPG 2980 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elvira, P.R., Sekida, S. & Okuda, K. Inducible growth mode switches influence Valonia rhizoid differentiation. Protoplasma 250, 407–414 (2013). https://doi.org/10.1007/s00709-012-0381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0381-y

Keywords

Navigation