Skip to main content
Log in

Morphological and molecular investigations of the holocephalan elephant fish nephron: the existence of a countercurrent-like configuration and two separate diluting segments in the distal tubule

Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In marine cartilaginous fish, reabsorption of filtered urea by the kidney is essential for retaining a large amount of urea in their body. However, the mechanism for urea reabsorption is poorly understood due to the complexity of the kidney. To address this problem, we focused on elephant fish (Callorhinchus milii) for which a genome database is available, and conducted molecular mapping of membrane transporters along the different segments of the nephron. Basically, the nephron architecture of elephant fish was similar to that described for elasmobranch nephrons, but some unique features were observed. The late distal tubule (LDT), which corresponded to the fourth loop of the nephron, ran straight near the renal corpuscle, while it was convoluted around the tip of the loop. The ascending and descending limbs of the straight portion were closely apposed to each other and were arranged in a countercurrent fashion. The convoluted portion of LDT was tightly packed and enveloped by the larger convolution of the second loop that originated from the same renal corpuscle. In situ hybridization analysis demonstrated that co-localization of Na+,K+,2Cl cotransporter 2 and Na+/K+-ATPase α1 subunit was observed in the early distal tubule and the posterior part of LDT, indicating the existence of two separate diluting segments. The diluting segments most likely facilitate NaCl absorption and thereby water reabsorption to elevate urea concentration in the filtrate, and subsequently contribute to efficient urea reabsorption in the final segment of the nephron, the collecting tubule, where urea transporter-1 was intensely localized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Althoff T, Hentschel H, Luig J, Schütz H, Kasch M, Kinne RK (2006) Na+-D-glucose cotransporter in the kidney of Squalus acanthias: molecular identification and intrarenal distribution. Am J Physiol Regul Integr Comp Physiol 290:R1094–R1104

    Article  CAS  PubMed  Google Scholar 

  • Biemesderfer D, Payne JA, Lytle CY, Forbush B 3rd (1996) Immunocytochemical studies of the Na-K-Cl cotransporter of shark kidney. Am J Physiol 270:F927–F936

    CAS  PubMed  Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  • Boylan JW (1972) A model for passive urea reabsorption in the elasmobranch kidney. Comp Biochem Physiol 42A:27–30

    Article  Google Scholar 

  • Clarke RW, Smith HW (1932) Absorption and excretion of water and salts by the elasmobranch fishes III. The use of xylose as a measure of the glomerular filtrate in Squalus acanthias. J Cell Comp Physiol 1:131–143

    Article  CAS  Google Scholar 

  • Cutler CP, Harmon S, Walsh J, Burch K (2012a) Characterization of aquaporin 4 protein expression and localization in tissues of the dogfish (Squalus acanthias). Front Physiol 3:21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cutler CP, Maclver B, Cramb G, Zeidel M (2012b) Aquaporin 4 is a ubiquitously expressed isoform in the dogfish (Squalus acanthias) shark. Front Physiol 2:107

    Article  PubMed Central  PubMed  Google Scholar 

  • Deetjen P, Antkowiak D, Boylan JW (1970) The nephron of the skate, Raja erinacea. Bull Mt Desert Isl Biol Lab 10:5–7

    Google Scholar 

  • Evans DH, Kormanik GA (1985) Urea efflux from the Squalus acanthias pup: the effect of stress. J Exp Biol 119:375–379

    CAS  PubMed  Google Scholar 

  • Friedman PA, Hebert SC (1990) Diluting segment in kidney of dogfish shark I. Localization and characterization of chloride absorption. Am J Physiol 258:R398–R408

    CAS  PubMed  Google Scholar 

  • Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC (1994) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 269:17713–17722

    CAS  PubMed  Google Scholar 

  • Goldstein L, Forster RP (1971) Osmoregulation and urea metabolism in the little skate Raja erinacea. Am J Physiol 220:742–746

    CAS  PubMed  Google Scholar 

  • Hebert SC, Mount DB, Gamba G (2004) Molecular physiology of cation-coupled Cl cotransport: the SLC12 family. Pflugers Arch 447:580–593

    Article  CAS  PubMed  Google Scholar 

  • Hentschel H (1987) Renal architecture of the dogfish Scyliorhinus caniculus (Chondrichthyes, Elasmobranchii). Zoomorphology 107:115–125

    Article  Google Scholar 

  • Hentschel H (1991) Developing nephrons in adolescent dogfish, Scyliorhinus caniculus (L.), with reference to ultrastructure of early stages, histogenesis of the renal countercurrent system, and nephron segmentation in marine elasmobranchs. Am J Anat 190:309–333

    Article  CAS  PubMed  Google Scholar 

  • Hentschel H, Elger M, Schmidt-Nielsen B (1986) Chemical and morphological differences in the kidney zones of the elasmobranch, Raja erinacea Mitch. Comp Biochem Physiol 84A:553–557

    Article  CAS  Google Scholar 

  • Hentschel H, Mähler S, Herter P, Elger M (1993) Renal tubule of dogfish, Scyliorhinus caniculus: a comprehensive study of structure with emphasis on intramembrane particles and immunoreactivity for H+-K+-adenosine triphosphatase. Anat Rec 235:511–532

    Article  CAS  PubMed  Google Scholar 

  • Hentschel H, Storb U, Teckhaus L, Elger M (1998) The central vessel of the renal countercurrent bundles of two marine elasmobranchs – dogfish (Scyliorhinus caniculus) and skate (Raja erinacea) – as revealed by light and electron microscopy with computer-assisted reconstruction. Anat Embryol 198:73−89

  • Hwang PP, Lee TH, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301:R28–R47

    Article  CAS  PubMed  Google Scholar 

  • Hyodo S, Katoh F, Kaneko T, Takei Y (2004) A facilitative urea transporter is localized in the renal collecting tubule of the dogfish, Triakis scyllia. J Exp Biol 207:347–356

    Article  CAS  PubMed  Google Scholar 

  • Hyodo S, Bell JD, Healy JM, Kaneko T, Hasegawa S, Takei Y, Donald JA, Toop T (2007) Osmoregulation in elephant fish Callorhinchus milii (Holocephali), with special reference to the rectal gland. J Exp Biol 210:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Kakumura K, Watanabe S, Bell JD, Donald JA, Toop T, Kaneko T, Hyodo S (2009) Multiple urea transporter proteins in the kidney of holocephalan elephant fish (Callorhinchus milii). Comp Biochem Physiol B 154:239–247

    Article  PubMed  Google Scholar 

  • Kato A, Muro T, Kimura Y, Li S, Islam Z, Ogoshi M, Doi H, Hirose S (2011) Differential expression of Na+-Cl cotransporter and Na+-K+-Cl cotransporter 2 in the distal nephrons of euryhaline and seawater pufferfishes. Am J Physiol Regul Integr Comp Physiol 300:R284–R297

    Article  CAS  PubMed  Google Scholar 

  • Kempton RT (1953) Studies on the elasmobranch kidney. II. Reabsorption of urea by the smooth dogfish, Mustelus canis. Biol Bull 104:45–56

    Article  CAS  Google Scholar 

  • Kokko JP, Rector FC (1972) Countercurrent multiplication system without active transport in inner medulla. Kidney Int 2:214–223

    Article  CAS  PubMed  Google Scholar 

  • Lacy ER, Reale E (1985a) The elasmobranch kidney. I. Gross anatomy and general distribution of the nephrons. Anat Embryol 173:23–34

    Article  CAS  PubMed  Google Scholar 

  • Lacy ER, Reale E (1985b) The elasmobranch kidney. II. Sequence and structure of the nephrons. Anat Embryol 173:163–186

    Article  CAS  PubMed  Google Scholar 

  • Lacy ER, Reale E (1986) The elasmobranch kidney. III. Fine structure of the peritubular sheath. Anat Embryol 173:299–305

    Article  CAS  PubMed  Google Scholar 

  • Lacy ER, Reale E (1991a) Fine structure of the elasmobranch renal tubule: neck and proximal segments of the little skate. Am J Anat 190:118–132

    Article  CAS  PubMed  Google Scholar 

  • Lacy ER, Reale E (1991b) The fine structure of the elasmobranch renal tubule: intermediate, distal, and collecting duct segments of the little skate. Am J Anat 192:478–497

    Article  CAS  PubMed  Google Scholar 

  • Lacy ER, Reale E, Schlusselberg DS, Smith WK, Woodward DS (1985) A renal countercurrent system in marine elasmobranch fish: a computer-assisted reconstruction. Science 227:1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Li S, Kato A, Takabe S, Chen AP, Romero MF, Umezawa T, Nakada T, Hyodo S, Hirose S (2013) Expression of a novel isoform of Na+/H+ exchanger 3 (NHE3) in the kidney and intestine of banded houndshark Triakis scyllium. Am J Physiol Regul Integr Comp Physiol 304:R865–R876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marshall WS, Grosell M (2006) Ion transport, osmoregulation and acid–base balance. In: Evans DH, Claiborne JB (eds) The Physiology of Fishes, 3rd edn. CRC, Boca Ranton, pp 177–230

    Google Scholar 

  • McManus JFA (1946) Histological demonstration of mucin after periodic acid. Nature 158:202

    Article  CAS  PubMed  Google Scholar 

  • Morgan RL, Wright PA, Ballantyne JS (2003) Urea transport in kidney brush-border membrane vesicles from an elasmobranch, Raja erinacea. J Exp Biol 206:3293–3302

    Article  CAS  PubMed  Google Scholar 

  • Nakada T, Westhoff CM, Yamaguchi Y, Hyodo S, Li X, Muro T, Kato A, Nakamura N, Hirose S (2010) Rhesus glycoprotein P2 (Rhp2) is a novel member of the Rh family of ammonia transporters highly expressed in shark kidney. J Biol Chem 285:2653–2664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Payan P, Goldstein L, Forster RP (1973) Gills and kidneys in ureosmotic regulation in euryhaline skates. Am J Physiol 224:367–372

    CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen B, Truniger B, Rabinowitz L (1972) Sodium-linked urea transport by the renal tubule of the spiny dogfish Squalus acanthias. Comp Biochem Physiol 42A:13–25

    Article  Google Scholar 

  • Smith HW (1936) The retention and physiological role of urea in the Elasmobranchii. Biol Rev 11:49–82

    Article  CAS  Google Scholar 

  • Stephenson JL (1972) Concentration of urine in a central core model of the renal counterflow system. Kidney Int 12:85–94

    Article  Google Scholar 

  • Swenson ER, Fine AD, Maren TH, Reale E, Lacy ER, Smolka AJ (1994) Physiological and immunocytochemical evidence for a putative H-K-ATPase in elasmobranch renal acid secretion. Am J Physiol 267:F639–F645

    CAS  PubMed  Google Scholar 

  • Takabe S, Teranishi K, Takaki S, Kusakabe M, Hirose S, Kaneko T, Hyodo S (2012) Morphological and functional characterization of a novel Na+/K+-ATPase-immunoreactive, follicle-like structure on the gill septum of Japanese banded houndshark, Triakis scyllium. Cell Tissue Res 348:141–153

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, Dandona N, Viswanathan LD, Tay A, Venter JC, Strausberg RL, Brenner S (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 5:932–944

    Article  CAS  Google Scholar 

  • Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy SW, Irimia M, Korzh V, Kondrychyn I, Lim ZW, Tay BH, Tohari S, Kong KW, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney BJ, Ingham PW, Tay A, Hillier LW, Minx P, Boehm T, Wilson RK, Brenner S, Warren WC (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood CM, Pärt P, Wright PA (1995) Ammonia and urea metabolism in relation to gill function and acid–base balance in a marine elasmobranch, the spiny dogfish (Squalus acanthias). J Exp Biol 198:1545–1558

    PubMed  Google Scholar 

  • Yamaguchi Y, Takaki S, Hyodo S (2009) Subcellular distribution of urea transporter in the collecting tubule of shark kidney is dependent on environmental salinity. J Exp Zool 311A:705–718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keigo Kakumura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakumura, K., Takabe, S., Takagi, W. et al. Morphological and molecular investigations of the holocephalan elephant fish nephron: the existence of a countercurrent-like configuration and two separate diluting segments in the distal tubule. Cell Tissue Res 362, 677–688 (2015). https://doi.org/10.1007/s00441-015-2234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2234-4

Keywords

Navigation