Skip to main content
Log in

Observation of Antiferromagnetic Magnons and Magnetostriction in Manganese Oxide Using Terahertz Time-Domain Spectroscopy

Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We observed antiferromagnetic magnons in manganese oxide (MnO) using terahertz time-domain spectroscopy (THz-TDS). The antiferromagnetic resonance (AFMR) frequency shows the behavior of a first-order phase transition near the Néel temperature (116 K). The temperature dependence of the AFMR frequency is explained well by a molecular field approximation including biquadratic exchange. It was found that the relaxation rate of the AFMR signal shows an abrupt increase near the Néel temperature, where the antiferromagnetic long-range order disappears. The change \(\Delta n\) in refractive index was obtained from the peak shift in the THz electric field. The temperature dependence of \(\Delta n\) can be explained by the lattice and magnetostrictive contributions to this refractive index change. The measurement of refractive index by THz-TDS is very useful for optically opaque materials such as MnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science 292, 2458 (2001).

    Article  Google Scholar 

  2. A. V. Kimel, A. Kirilyuk, and T. Rasing, Laser & Photon. Rev. 1, 275 (2007).

    Article  Google Scholar 

  3. R. C. Myers, M. H. Mikkelsen, J. -M. Tang, A. C. Gossard, M. E. Flatte, and D. D. Awschalom, Nat. Mater. 7, 203 (2008).

    Article  Google Scholar 

  4. T. Moriyasu, D. Nomoto, Y. Koyama, Y. Fukuda, and T. Kohmoto, Phys. Rev. Lett. 103, 213602 (2009).

    Article  Google Scholar 

  5. T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105, 077402 (2010).

    Article  Google Scholar 

  6. C. Kadlec, V. Goian, K. Z. Rushchanskii, P. Kužel, M. Ležaić, K Kohn, R. V. Pisarev, and S. Kamba, Phys. Rev. B 84, 174120 (2011).

    Article  Google Scholar 

  7. R. Zhou, Z. Jin, G. Li, G. Ma, Z. Cheng, and X. Wang, Appl. Phys. Lett. 100, 061102 (2012).

    Article  Google Scholar 

  8. C. Kittel, Introduction to Solid State Physics, 8th edn. (John Wiley & Sons, New York, 2005).

    Google Scholar 

  9. M. S. Jagadeesh and M. S. Seehra, Phys. Rev. B 23, 1185 (1981).

    Article  Google Scholar 

  10. T. Kohmoto, H. Sakaguchi, M. Takahashi, K. Kakita, Y. Koyama, and T. Moriyasu, Phys. Rev. B 78, 144420 (2008).

    Article  Google Scholar 

  11. T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. G. Roskos, Opt. Express 13, 5353 (2005).

    Article  Google Scholar 

  12. A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, J. Opt. Soc. Am. A 17, 74 (2000).

    Article  Google Scholar 

  13. T. Hattori, R. Rungsawang, K. Ohta, and K. Tukamoto, 41, 5198 (2002).

    Article  Google Scholar 

  14. T. Kohmoto, Y. Fukuda, and T. Hashi, Phys. Rev. B 34, 6085 (1986).

    Article  Google Scholar 

  15. T. Kohmoto, Y. Fukuda, M. Kunitomo, and K. Isoda, Phys. Rev. B 62, 579 (2000).

    Article  Google Scholar 

  16. R. V. Jones, Proc. R. Soc. London, Ser. A 349, 423 (1976).

    Google Scholar 

  17. F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, Opt. Express. 15, 13212 (2007).

    Article  Google Scholar 

  18. P. L. Richards, J. Appl. Phys., J. Appl. Phys. 34, 1237 (1963).

    Article  Google Scholar 

  19. D. Bloch, R. Maury, and C. Vetter, Phys. Lett. A 49, 354 (1974).

    Article  Google Scholar 

  20. A. Treindl and K. H. Germann, Phys. Stat. Sol. (b) 80, 159 (1977).

    Article  Google Scholar 

  21. M. Tinkham, J. Appl. Phys. 33, 1248 (1962).

    Article  Google Scholar 

  22. D. S. Rodbell, S. Jacobs, J. Owen, and E. A. Harris, Phys. Rev. Lett. 11, 10 (1963).

    Article  Google Scholar 

  23. A. J. Sievers and M. Tinkham, Phys. Rev. 129, 1566 (1963).

    Article  Google Scholar 

  24. B. A. Coles, J. W. Orton, and J. Owen, Phys. Rev. Lett. 4, 116 (1960).

    Article  Google Scholar 

  25. A. Abragam, The Principle of Nuclear Magnetism (Clarendon, Oxford, 1961).

    Google Scholar 

  26. J. E. Pask, D. J. Singh, I. I. Mazin, C. S. Hellberg, and J. Kortus, Phys. Rev. B 64, 024403 (2001).

    Article  Google Scholar 

  27. K. E. Oughstun and N. A. Cartwright, Opt. Express 11, 1541 (2003).

    Article  Google Scholar 

  28. S. Ramaseshan, K. Vedam, and R. S. Krishnan, Progress in Crystal Physics. ed. by R. S. Krishnan (Interseience Publishers, Inc., New York, 1960), p.149.

  29. H. Muller, Phys. Rev. 47, 947 (1935).

    Article  Google Scholar 

  30. H. Muller, Physics 6, 179 (1935).

    Article  Google Scholar 

  31. B. Morosin, Phys. Rev. B 1, 236 (1970).

    Article  Google Scholar 

  32. E. Colineau, P. Javorsky, P. Boulet, F. Wastin, J. C. Griveau, J. Rebizant, J. P. Sanchez, and G. R. Stewart, Phys. Rev. B 69, 184411 (2004).

    Article  Google Scholar 

  33. B. F. Woodfield, J. L. Shapiro, R. Stevens, and J. Boerio-Goates, Phys. Rev. B 60, 7335 (1999).

    Article  Google Scholar 

  34. D. S. Rodbell, L. M. Osika, and P. E. Lawrence, J. Appl. Phys. 36, 666 (1965).

    Article  Google Scholar 

  35. G. Srinivasan and M. S. Seehra, Phys. Rev. B 28, 6542 (1983).

    Article  Google Scholar 

  36. D. Bloch and R. Maury, Phys. Rev. B 7, 4883 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Moriyasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriyasu, T., Wakabayashi, S. & Kohmoto, T. Observation of Antiferromagnetic Magnons and Magnetostriction in Manganese Oxide Using Terahertz Time-Domain Spectroscopy. J Infrared Milli Terahz Waves 34, 277–288 (2013). https://doi.org/10.1007/s10762-013-9963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-9963-9

Keywords

Navigation