Skip to main content

Advertisement

Log in

Update of molecular pathobiology in oral cancer: a review

International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Head and neck cancer including oral squamous cell carcinoma (OSCC) is the sixth most common cancer in the world. OSCC has a high potential for local invasion and nodal metastasis, and the overall 5-year survival rate has not significantly changed during the past 30 years. Recent research has elucidated the detailed molecular mechanisms of carcinogenesis, tumor progression, and metastasis of OSCC. It is generally accepted that OSCC arises from multiple genetic alterations caused by chronic exposure to carcinogens such as alcohol, smoking, viral infections, and inflammation. The molecular mechanisms of carcinogenesis, tumor progression, and metastasis of head and neck cancer have been elucidated by recent advances in molecular biology. However, many unsolved questions remain. In this review, we describe the current molecular biological findings such as human papillomavirus infection, epithelial–mesenchymal transition, microRNA, and our novel molecular pathological findings of OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Min R, Siyi L, Wenjun Y et al (2012) Toll-like receptor-9 agonists increase cyclin D1 expression partly through activation of activator protein-1 in human oral squamous cell carcinoma cells. Cancer Sci 103(11):1938–1945

    Article  CAS  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62(1):10–29

    Article  PubMed  Google Scholar 

  3. Tanaka S, Sobue T (2005) Comparison of oral and pharyngeal cancer mortality in five countries: France, Italy, Japan, UK and USA from the WHO Mortality Database (1960–2000). Jpn J Clin Oncol 35(8):488–491

    Article  CAS  PubMed  Google Scholar 

  4. Kurihara M, Kirita T, Sasahira T et al (2013) Protumoral roles of melanoma inhibitory activity 2 in oral squamous cell carcinoma. Br J Cancer 108(7):1460–1469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Dos Reis PP, Bharadwaj RR, Machado J et al (2008) Claudin 1 overexpression increases invasion and is associated with aggressive histological features in oral squamous cell carcinoma. Cancer 113(11):3169–3180

    Article  PubMed  Google Scholar 

  6. Marsh D, Suchak K, Moutasim KA et al (2011) Stromal features are predictive of disease mortality in oral cancer patients. J Pathol 223(4):470–481

    Article  CAS  PubMed  Google Scholar 

  7. Sasahira T, Kurihara M, Bhawal UK et al (2012) Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer 107(4):700–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11(1):9–22

    Article  CAS  PubMed  Google Scholar 

  9. Syrjanen S, Lodi G, von Bultzingslowen I et al (2011) Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis 17(Suppl 1):58–72

    Article  PubMed  Google Scholar 

  10. Kreimer AR, Clifford GM, Boyle P et al (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev 14(2):467–475

    Article  CAS  Google Scholar 

  11. D’Souza G, Kreimer AR, Viscidi R et al (2007) Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 356(19):1944–1956

    Article  PubMed  Google Scholar 

  12. Begum S, Westra WH (2008) Basaloid squamous cell carcinoma of the head and neck is a mixed variant that can be further resolved by HPV status. Am J Surg Pathol 32(7):1044–1050

    Article  PubMed  Google Scholar 

  13. Quan J, Elhousiny M, Johnson NW et al (2013) Transforming growth factor-beta1 treatment of oral cancer induces epithelial–mesenchymal transition and promotes bone invasion via enhanced activity of osteoclasts. Clin Exp Metastasis 30(5):659–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGFbeta in cancer. FEBS Lett 586(14):1959–1970

    Article  CAS  PubMed  Google Scholar 

  15. Wu BH, Xiong XP, Jia J et al (2011) MicroRNAs: new actors in the oral cancer scene. Oral Oncol 47(5):314–319

    Article  CAS  PubMed  Google Scholar 

  16. Perez-Sayans M, Pilar GD, Barros-Angueira F et al (2012) Current trends in miRNAs and their relationship with oral squamous cell carcinoma. J Oral Pathol Med 41(6):433–443

    Article  CAS  PubMed  Google Scholar 

  17. Park NJ, Zhou H, Elashoff D et al (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15(17):5473–5477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wald AI, Hoskins EE, Wells SI et al (2011) Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck 33(4):504–512

    Article  PubMed Central  PubMed  Google Scholar 

  19. Li J, Huang H, Sun L et al (2009) MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 15(12):3998–4008

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Wang A, Heidbreder CE et al (2010) MicroRNA-24 targeting RNA-binding protein DND1 in tongue squamous cell carcinoma. FEBS Lett 584(18):4115–4120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chang KW, Liu CJ, Chu TH et al (2008) Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. J Dent Res 87(11):1063–1068

    Article  CAS  PubMed  Google Scholar 

  22. Liu CJ, Tsai MM, Hung PS et al (2010) miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res 70(4):1635–1644

    Article  CAS  PubMed  Google Scholar 

  23. Yu ZW, Zhong LP, Ji T et al (2010) MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol 46(4):317–322

    Article  CAS  PubMed  Google Scholar 

  24. Wong TS, Liu XB, Chung-Wai Ho A et al (2008) Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 123(2):251–257

    Article  CAS  PubMed  Google Scholar 

  25. Mutallip M, Nohata N, Hanazawa T et al (2011) Glutathione S-transferase P1 (GSTP1) suppresses cell apoptosis and its regulation by miR-133alpha in head and neck squamous cell carcinoma (HNSCC). Int J Mol Med 27(3):345–352

    CAS  PubMed  Google Scholar 

  26. Jiang L, Liu X, Chen Z et al (2010) MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 432(1):199–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Liu X, Wang C, Chen Z et al (2011) MicroRNA-138 suppresses epithelial–mesenchymal transition in squamous cell carcinoma cell lines. Biochem J 440(1):23–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zidar N, Bostjancic E, Gale N et al (2011) Down-regulation of microRNAs of the miR-200 family and miR-205, and an altered expression of classic and desmosomal cadherins in spindle cell carcinoma of the head and neck–hallmark of epithelial–mesenchymal transition. Hum Pathol 42(4):482–488

    Article  CAS  PubMed  Google Scholar 

  29. Hatakeyama H, Cheng H, Wirth P et al (2010) Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS One 5(9):e12702. doi:10.1371/journal.pone.0012702

    Article  PubMed Central  PubMed  Google Scholar 

  30. Donnem T, Fenton CG, Lonvik K et al (2012) MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer. PLoS One 7(1):e29671. doi:10.1371/journal.pone.0029671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Slaby O, Redova M, Poprach A et al (2012) Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients. Genes Chromosom Cancer 51(7):707–716

    Article  CAS  PubMed  Google Scholar 

  32. Jiao LR, Frampton AE, Jacob J et al (2012) MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS One 7(2):e32068. doi:10.1371/journal.pone.0032068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sasahira T, Ueda N, Yamamoto K et al (2013) Trks are novel oncogenes involved in the induction of neovascularization, tumor progression, and nodal metastasis in oral squamous cell carcinoma. Clin Exp Metastasis 30(2):165–176

    Article  CAS  PubMed  Google Scholar 

  34. Sasahira T, Ueda N, Kurihara M et al (2013) Tropomyosin receptor kinases B and C are tumor progressive and metastatic marker in colorectal carcinoma. Hum Pathol 44(6):1098–1106

    Article  CAS  PubMed  Google Scholar 

  35. Davidson B, Reich R, Lazarovici P et al (2003) Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res 9(6):2248–2259

    CAS  PubMed  Google Scholar 

  36. Yu X, Liu L, Cai B et al (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 99(3):543–552

    Article  CAS  PubMed  Google Scholar 

  37. Bouzas-Rodriguez J, Cabrera JR, Delloye-Bourgeois C et al (2010) Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis. J Clin Invest 120(3):850–858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Nakagawara A, Arima-Nakagawara M, Scavarda NJ et al (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328(12):847–854

    Article  CAS  PubMed  Google Scholar 

  39. Yamashiro DJ, Liu XG, Lee CP et al (1997) Expression and function of Trk-C in favourable human neuroblastomas. Eur J Cancer 33(12):2054–2057

    Article  CAS  PubMed  Google Scholar 

  40. Satoh F, Mimata H, Nomura T et al (2001) Autocrine expression of neurotrophins and their receptors in prostate cancer. Int J Urol 8(7):S28–S34

    Article  CAS  PubMed  Google Scholar 

  41. Chuang LS, Ito K, Ito Y (2013) RUNX family: regulation and diversification of roles through interacting proteins. Int J Cancer 132(6):1260–1271

    Article  CAS  PubMed  Google Scholar 

  42. Sasahira T, Kurihara M, Yamamoto K et al (2011) Downregulation of runt-related transcription factor 3 associated with poor prognosis of adenoid cystic and mucoepidermoid carcinomas of the salivary gland. Cancer Sci 102(2):492–497

    Article  PubMed  Google Scholar 

  43. Sasahira T, Akama Y, Fujii K et al (2005) Expression of receptor for advanced glycation end products and HMGB1/amphoterin in colorectal adenomas. Virchows Arch 446(4):411–415

    Article  CAS  PubMed  Google Scholar 

  44. Kusume A, Sasahira T, Luo Y et al (2009) Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer. Pathobiology 76(4):155–162

    Article  CAS  PubMed  Google Scholar 

  45. Kuniyasu H, Sasaki T, Sasahira T et al (2004) Depletion of tumor-infiltrating macrophages is associated with amphoterin expression in colon cancer. Pathobiology 71(3):129–136

    Article  CAS  PubMed  Google Scholar 

  46. Sasahira T, Sasaki T, Kuniyasu H (2005) Interleukin-15 and transforming growth factor alpha are associated with depletion of tumor-associated macrophages in colon cancer. J Exp Clin Cancer Res 24(1):69–74

    CAS  PubMed  Google Scholar 

  47. Rauvala H, Huttunen HJ, Fages C et al (2000) Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol 19(5):377–387

    Article  CAS  PubMed  Google Scholar 

  48. Taguchi A, Blood DC, del Toro G et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405(6784):354–360

    Article  CAS  PubMed  Google Scholar 

  49. Kuniyasu H, Oue N, Wakikawa A et al (2002) Expression of receptors for advanced glycation end-products (RAGE) is closely associated with the invasive and metastatic activity of gastric cancer. J Pathol 196(2):163–170

    Article  CAS  PubMed  Google Scholar 

  50. Kuniyasu H, Chihara Y, Takahashi T (2003) Co-expression of receptor for advanced glycation end products and the ligand amphoterin associates closely with metastasis of colorectal cancer. Oncol Rep 10(2):445–448

    PubMed  Google Scholar 

  51. Sasahira T, Kirita T, Bhawal UK et al (2007) Receptor for advanced glycation end products (RAGE) is important in the prediction of recurrence in human oral squamous cell carcinoma. Histopathology 51(2):166–172

    Article  CAS  PubMed  Google Scholar 

  52. Sasahira T, Kirita T, Bhawal UK et al (2007) The expression of receptor for advanced glycation end products is associated with angiogenesis in human oral squamous cell carcinoma. Virchows Arch 450(3):287–295

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto K, Kitayama W, Denda A et al (2006) Expression of receptor for advanced glycation end products during rat tongue carcinogenesis by 4-nitroquinoline 1-oxide and effect of a selective cyclooxygenase-2 inhibitor, etodolac. Pathobiology 73(6):317–324

    Article  CAS  PubMed  Google Scholar 

  54. Bosserhoff AK, Moser M, Buettner R (2004) Characterization and expression pattern of the novel MIA homolog TANGO. Gene Expr Patterns 4(4):473–479

    Article  CAS  PubMed  Google Scholar 

  55. Bosserhoff AK, Buettner R (2002) Expression, function and clinical relevance of MIA (melanoma inhibitory activity). Histol Histopathol 17(1):289–300

    CAS  PubMed  Google Scholar 

  56. Arndt S, Bosserhoff AK (2006) TANGO is a tumor suppressor of malignant melanoma. Int J Cancer 119(12):2812–2820

    Article  CAS  PubMed  Google Scholar 

  57. Arndt S, Bosserhoff AK (2007) Reduced expression of TANGO in colon and hepatocellular carcinomas. Oncol Rep 18(4):885–891

    CAS  PubMed  Google Scholar 

  58. Koehler MR, Bosserhoff A, von Beust G et al (1996) Assignment of the human melanoma inhibitory activity gene (MIA) to 19q13.32–q13.33 by fluorescence in situ hybridization (FISH). Genomics 35(1):265–267

    Article  CAS  PubMed  Google Scholar 

  59. Bosserhoff AK, Stoll R, Sleeman JP et al (2003) Active detachment involves inhibition of cell-matrix contacts of malignant melanoma cells by secretion of melanoma inhibitory activity. Lab Invest 83(11):1583–1594

    Article  CAS  PubMed  Google Scholar 

  60. Jachimczak P, Apfel R, Bosserhoff AK et al (2005) Inhibition of immunosuppressive effects of melanoma-inhibiting activity (MIA) by antisense techniques. Int J Cancer 113(1):88–92

    Article  CAS  PubMed  Google Scholar 

  61. Sasahira T, Kirita T, Oue N et al (2008) High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci 99(9):1806–1812

    CAS  PubMed  Google Scholar 

  62. Sasahira T, Kirita T, Kurihara M et al (2010) MIA-dependent angiogenesis and lymphangiogenesis are closely associated with progression, nodal metastasis and poor prognosis in tongue squamous cell carcinoma. Eur J Cancer 46(12):2285–2294

    Article  CAS  PubMed  Google Scholar 

  63. Bosserhoff AK, Moser M, Scholmerich J et al (2003) Specific expression and regulation of the new melanoma inhibitory activity-related gene MIA2 in hepatocytes. J Biol Chem 278(17):15225–15231

    Article  CAS  PubMed  Google Scholar 

  64. Hellerbrand C, Bataille F, Schlegel J et al (2005) In situ expression patterns of melanoma inhibitory activity 2 in healthy and diseased livers. Liver Int 25(2):357–366

    Article  CAS  PubMed  Google Scholar 

  65. Hellerbrand C, Amann T, Schlegel J et al (2008) The novel gene MIA2 acts as a tumour suppressor in hepatocellular carcinoma. Gut 57(2):243–251

    Article  CAS  PubMed  Google Scholar 

  66. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

    Article  Google Scholar 

  67. Wu JY, Yi C, Chung HR et al (2010) Potential biomarkers in saliva for oral squamous cell carcinoma. Oral Oncol 46(4):226–231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Sasahira.

About this article

Cite this article

Sasahira, T., Kirita, T. & Kuniyasu, H. Update of molecular pathobiology in oral cancer: a review. Int J Clin Oncol 19, 431–436 (2014). https://doi.org/10.1007/s10147-014-0684-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-014-0684-4

Keywords

Navigation