Skip to main content
Log in

DEM simulation on the one-dimensional compression behavior of various shaped crushable granular materials

Granular Matter Aims and scope Submit manuscript

Abstract

In order to investigate the effects of particle shape on the compression behavior of granular materials, a series of simulations was conducted using a two-dimensional discrete element method employing moment springs. Fracturable granular assemblies were constructed from particles of the same shape and size. The range of possible particle shapes includes disk, ellipse and hexagon, with different aspect ratios. Simulations of single particle crushing tests on elliptical particles showed that crushing could be classified into three types: cleavage destruction, bending fracture and edge abrasion, depending on the manner of compression. A series of simulations of one-dimensional compression tests was then conducted on six types of crushable particle assemblies; the three types of crushing mentioned above were also observed, but their rates of occurrence depended on the particle shape. Cleavage destruction was mainly observed with circular and elliptical particles; bending fracture was observed only with elongated particles; edge abrasion was frequently observed with angular particles. Despite the difference in crushing type, all samples, when subjected to intense compression, converged to a critical grading with unique void ratio, grain size distribution and aspect ratio, with a similar distribution of number of contact points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Terzaghi, K., Peck, R.B.: Soil mechanics in engineering practice. Wiley, New York (1948)

    Google Scholar 

  2. Roberts, J.E., de Souza, J.M.: The compressibility of sand. Proc. Am. Society Test. Mater. 58, 1269–1277 (1958)

    Google Scholar 

  3. Hagerty, M.M., Hite, D.R., Ullrich, C.R., Hagerty, D.J.: One-dimensional high-pressure compression of granular media. J. Geotech. Eng. 119(1), 1–18 (1993)

    Google Scholar 

  4. Lade, P.V., Yamamuro, J.A., Bopp, P.A.: Significance of particle crushing in granular materials. J. Geotech. Eng. 122(4), 309–316 (1996)

    Article  Google Scholar 

  5. Nakata, Y., Hyodo, M., Hyde, A.F.L., Kato, Y., Murata, H.: Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found. 41(1), 69–82 (2001)

    Article  Google Scholar 

  6. McDowell, G.R., Bolton, M.D., Robertson, D.: The fractal crushing of granular materials. J. Mech. Phys. Solids 44(12), 2079–2102 (1996)

    Article  ADS  Google Scholar 

  7. Kjaernsli, B., Sande, A.: Compressibility of some coarse-grained materials. Proc. Wiesbaden Eur. Conf. Soil Mech. Found. Eng. 1, 245–251 (1963)

    Google Scholar 

  8. Liu, H.Y., Kou, S.Q., Lindqvist, P.-A.: Numerical studies on the inter-particle breakage of a confined particle assembly in rock crushing. Mech. Mater. 37, 935–954 (2005)

    Article  Google Scholar 

  9. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  10. Robertson, D.: Computer simulations of crushable aggregates. PhD thesis, Cambridge University (2000)

  11. Harireche, O., McDowell, G.R.: Discrete element modeling of cyclic loading of crushable aggregates. Granul. Matter 5, 147–151 (2003)

    Article  MATH  Google Scholar 

  12. Thornton, C., Yin, K.K., Adams, M.J.: Numerical simulation of the impact fracture and fragmentation of agglomerates 29, 424–435 (1996)

  13. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation for crushable soils. Geotechnique 53(7), 631–641 (2003)

    Google Scholar 

  14. Sukumaran, B., Einav, I., Dyskin, A.: Qualitative assessment of the influence of coordination number on crushing strength using DEM. In: Proceedings of the Fifth World Congress Particle Technology 23–27 (2006)

  15. Moreno, R., Ghadiri, M., Antony, S.J.: Effect of the impact angle on the breakage of agglomerates: a numerical study using DEM. Powder Tech. 130, 132–137 (2003)

    Article  Google Scholar 

  16. Lobo-Guerrero, S., Vallejo, L.E.: Modeling granular crushing in ring shear tests: experimental and numerical analyses. Soils Found. 46(2), 147–157 (2006)

    Article  Google Scholar 

  17. Ben-Nun, O., Einav, I., Tordesillas, A.: Force attractor in confined comminution of granular materials. Phys. Rev. Lett. 104, 108001-1–108001-4 (2010)

    Article  ADS  Google Scholar 

  18. Tsoungui, O., Vallet, D., Charmet, J.C.: Numerical model of crushing of grains inside two-dimensional granular materials. Powder Tech. 105, 190–198 (1999)

    Article  Google Scholar 

  19. Carmona, H.A., Kun, F., Andrade Jr, J.S., Herrmann, H.J.: Computer simulation of fatigue under diametrical compression. Phys. Rev. E 75, 046115-1–046115-7 (2007)

    Article  ADS  Google Scholar 

  20. Carmona, H.A., Wittel, F.K., Kun, F., Herrmann, H.J.: Fragmentation processes in impact of spheres. Phys. Rev. E 77, 051302-1–051302-10 (2008)

    Article  ADS  Google Scholar 

  21. Kun, F., Herrmann, H.J.: Transition from damage to fragmentation in collision of solids. Phys. Rev. E 59(3), 2623–2632 (1999)

    Article  ADS  Google Scholar 

  22. Lim, W.L., McDowell, G.R.: Discrete element modeling of railway ballast. Granul. Matter 7, 19–29 (2005)

    Article  MATH  Google Scholar 

  23. D’Addetta, G.A., Kun, F., Ramm, E.: On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4, 77–90 (2002)

    Article  MATH  Google Scholar 

  24. Jiang, M.J., Yu, H.-S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340–357 (2005)

    Article  Google Scholar 

  25. Ueda, T., Matsushima, T., Yamada, Y.: Micro structures of granular materials with various grain size distributions. Powder Tech. 217, 533–539 (2012)

    Article  Google Scholar 

  26. Thornton, C., Ciomocos, M.T., Adams, M.J.: Numerical simulations of diametrical compression tests on agglomerates. Powder Tech. 140, 258–267 (2004)

    Article  Google Scholar 

  27. Matsushima, T., Ikema, T., Yamada, Y.: Crushability of concrete debris: experiments and DEM simulation. J. Appl. Mech. JSCE 12, 489–496 (2009)

    Google Scholar 

  28. Delgado, A., Moriguchi, H., Hakuno, M.: Three dimensional extended distinct element method applied to bridge collapse analysis. In: 11th World Conference in Earthquake Engineering (1996)

  29. Matsushima, T., Uesugi, K., Nakano, T., Tsuchiyama, A.: Microstructural quantification of granular assembly studied by micro X-ray CT at Spring-8. J. Appl. Mech. JSCE 11, 507–516 (2008, in Japanese)

    Google Scholar 

  30. Mahmood, A.: Fabric-mechanical property relationships in fine granular soils. PhD thesis, University of California, Berkeley (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, T., Matsushima, T. & Yamada, Y. DEM simulation on the one-dimensional compression behavior of various shaped crushable granular materials. Granular Matter 15, 675–684 (2013). https://doi.org/10.1007/s10035-013-0415-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0415-y

Keywords

Navigation