Skip to main content
Log in

Abstract

We study stability of N-solitary wave solutions of the Fermi-Pasta-Ulam (FPU) lattice equation. Solitary wave solutions of the FPU lattice equation cannot be characterized as critical points of conservation laws due to the lack of infinitesimal invariance in the spatial variable. In place of standard variational arguments for Hamiltonian systems, we use an exponential stability property of the linearized FPU equation in a weighted space which is biased in the direction of motion. The dispersion of the linearized FPU equation balances the potential term for low frequencies, whereas the dispersion is superior for high frequencies.We approximate the low frequency part of a solution of the linearized FPU equation by a solution to the linearized Korteweg-de Vries (KdV) equation around an N-soliton solution. We prove an exponential stability property of the linearized KdV equation around N-solitons by using the linearized Bäcklund transformation and use the result to analyze the linearized FPU equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bambusi D., Ponno A.: On metastability in FPU. Commun. Math. Phys. 264, 539–561 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences; American Mathematical Society, 2003

  3. Eilbeck J.C., Flesch R.: Calculation of families of solitary waves on discrete lattices. Phys. Lett. A 149, 200–202 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  4. Fermi, E., Pasta, J., Ulam, S.: Studies of Nonlinear Problems. I. Los Alamos Scientific Laboratory Report, LA-1940, 1955

  5. Friesecke G., Pego R.L.: Solitary waves on FPU lattices, I. Qualitative properties, renormalization and continuum limit. Nonlinearity 12, 1601–1627 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Friesecke G., Pego R.L.: Solitary waves on FPU lattices, II. Linear implies nonlinear stability. Nonlinearity 15, 1343–1359 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Friesecke G., Pego R.L.: Solitary waves on Fermi-Pasta-Ulam lattices, III. Howland-type Floquet theory. Nonlinearity 17, 207–227 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Friesecke G., Pego R.L.: Solitary waves on Fermi-Pasta-Ulam lattices, IV. Proof of stability at low energy. Nonlinearity 17, 229–251 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Friesecke G., Wattis J.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161, 391–418 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M.: Korteweg-deVries equation and generalization, VI. Methods for exact solution. Commun. Pure Appl. Math. 27, 97–133 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haragus-Courcelle, M., Sattinger, D,H.: Inversion of the linearized Korteweg-deVries equation at the multi-soliton solutions. Z. Angew. Math. Phys. 49, 436–469 (1998)

    Google Scholar 

  12. Henry D.(1981) Geometric Theory of Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin

  13. Hoffman A., Wayne C.E.: Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice. Nonlinearity 21, 2911–2947 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Kapitula T.: On the stability of N-solitons in integrable systems. Nonlinearity 20, 879–907 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Kato T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics. Adv. Math. Suppl. Stud. 8, 93–128 (1983)

    Google Scholar 

  16. Maddocks J.H., Sachs R.L.: On the stability of KdV multi-solitons. Commun. Pure Appl. Math. 46, 867–901 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martel Y., Merle F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Rational Mech. Anal. 157, 219–254 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Martel Y., Merle F., Tsai T.P.: Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations. Commun. Math. Phys. 231, 347–373 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Martel Y., Merle F., Tsai T.P.: Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations. Duke Math. J. 133, 405–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mizumachi T.: Asymptotic stability of lattice solitons. Commun. Math. Phys. 288, 125–144 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Mizumachi T.: Weak interaction between solitary waves of the generalized KdV equations. SIAM J. Math. Anal. 35, 1042–1080 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mizumachi T., Pego R.L.: Asymptotic stability of Toda lattice solitons. Nonlinearity 21, 2099–2111 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Mizumachi, T., Pego, R.L., Quintero, J.R.: Asymptotic stability of solitary waves in the Benney-Luke model of water waves. http://arxiv.org/pdf/1202.0450v1.pdf

  24. Pego R.L., Weinstein M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305–349 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Perelman G.: Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equations. Spectral theory, microlocal analysis, singular manifolds. Math. Top. 14, 78–137 (1997)

    MathSciNet  Google Scholar 

  26. Perelman G.: Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations. Commun. Partial Differ. Equ. 29, 1051–1095 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness. Academic Press, New York, 1975

  28. Rodnianski, I., Schlag, W., Soffer, A.: Asymptotic stability of N-soliton states of NLS. Arxiv preprint math.AP/0309114 (2003)

  29. Toda, M.: Theory of Nonlinear Lattices, 2nd edn. Springer Series in Solid-State Sciences, vol. 20. Springer, Berlin, 1989

  30. Wahlquist H.D., Estabrook F.B.: Prolongation structures of nonlinear evolution equations. J. Math. Phys. 16, 1–7 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Zabusky N.J., Kruskal M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsu Mizumachi.

Additional information

Communicated by G. Friesecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizumachi, T. Asymptotic Stability of N-Solitary Waves of the FPU Lattices. Arch Rational Mech Anal 207, 393–457 (2013). https://doi.org/10.1007/s00205-012-0564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0564-x

Keywords

Navigation