Skip to main content
Log in

Asymptotic Stability of Lattice Solitons in the Energy Space

Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Orbital and asymptotic stability for 1-soliton solutions of the Toda lattice equations as well as for small solitary waves of the FPU lattice equations are established in the energy space. Unlike analogous Hamiltonian PDEs, the lattice equations do not conserve the adjoint momentum. In fact, the Toda lattice equation is a bidirectional model that does not fit in with the existing theory for the Hamiltonian systems by Grillakis, Shatah and Strauss. To prove stability of 1-soliton solutions, we split a solution around a 1-soliton into a small solution that moves more slowly than the main solitary wave and an exponentially localized part. We apply a decay estimate for solutions to a linearized Toda equation which has been recently proved by Mizumachi and Pego to estimate the localized part. We improve the asymptotic stability results for FPU lattices in a weighted space obtained by Friesecke and Pego.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Benjamin T.B.: The stability of solitary waves. Proc. Roy. Soc. London A 328, 153–183 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bona J.L.: On the stability of solitary waves. Proc. Roy. Soc. London A 344, 363–374 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bona J.L., Chen M., Saut J.C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I. Derivation and linear theory. J. Nonlinear Sci. 12(4), 283–318 (2002)

    MATH  ADS  MathSciNet  Google Scholar 

  4. Bona J.L., Chen M., Saut J.C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media II. The nonlinear theory. Nonlinearity 17, 925–952 (2004)

    MATH  ADS  MathSciNet  Google Scholar 

  5. Cazenave, T.: Semilinear Schrodinger equations. Courant Lecture Notes in Mathematics 10, New York: New York University, Courant Institute of Mathematical Sciences. Providence, RI: Amer. Math. Soc., 2003

  6. Ei S.-I.: The motion of weakly interacting pulses in reaction-diffusion systems. J. Dynam. Diff. Eq. 14, 85–137 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Flaschka H.: On the Toda lattice. II. Inverse-scattering solution. Progr. Theor. Phys. 51, 703–716 (1974)

    Article  MathSciNet  Google Scholar 

  8. Friesecke G., Pego R.L.: Solitary waves on FPU lattices I, Qualitative properties, renormalization and continuum limit. Nonlinearity 12, 1601–1627 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Friesecke G., Pego R.L.: Solitary waves on FPU lattices. II, Linear implies nonlinear stability. Nonlinearity 15, 1343–1359 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Friesecke G., Pego R.L.: Solitary waves on Fermi-Pasta-Ulam lattices III, Howland-type Floquet theory. Nonlinearity 17, 207–227 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Friesecke G., Pego R.L.: Solitary waves on Fermi-Pasta-Ulam lattices IV, Proof of stability at low energy. Nonlinearity 17, 229–251 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Friesecke G., Wattis J.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161, 391–418 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Grillakis M., Shatah J., Strauss W.A.: Stability Theory of solitary waves in the presence of symmetry I. J. Diff. Eq. 74, 160–197 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Grillakis M., Shatah J., Strauss W.A.: Stability Theory of solitary waves in the presence of symmetry II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Martel Y., Merle F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157(3), 219–254 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martel Y., Merle F.: Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18, 55–80 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Mizumachi T.: Weak interaction between solitary waves of the generalized KdV equations. SIAM J. Math. Anal. 35, 1042–1080 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mizumachi T., Pego R.L.: Asymptotic stability of Toda lattice solitons. Nonlinearity 21, 2061–2071 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud. 8, New York: Academic Press, 1983, pp. 93–128

  20. Pego R.L., Smereka P., Weinstein M.I.: Oscillatory instability of solitary waves in a continuum model of lattice vibrations. Nonlinearity 8, 921–941 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Pego R.L., Weinstein M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305–349 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Promislow K.: A renormalization method for modulational stability of quasi-steady patterns in dispersive systems. SIAM J. Math. Anal. 33, 1455–1482 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Quintero J.R.: Nonlinear stability of a one-dimensional Boussinesq equation. J. Dynam. Diff. Eq. 15, 125–142 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Quintero, J.R., Pego, R.L.: Asymptotic stability of solitary waves in the Benney-Luke model of water waves. Unpublished manuscript

  25. Shatah J., Strauss W.A.: Instability of nonlinear bound states. Commun. Math. Phys. 100, 173–190 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Toda, M.: Nonlinear waves and solitons. Mathematics and its Applications (Japanese Series) 5, Dordrecht: Kluwer Academic Publishers Group, Tokyo: SCIPRESS, 1989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsu Mizumachi.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizumachi, T. Asymptotic Stability of Lattice Solitons in the Energy Space. Commun. Math. Phys. 288, 125–144 (2009). https://doi.org/10.1007/s00220-009-0768-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0768-6

Keywords

Navigation