Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Papers
Low Nitrogen Fertilization Adapts Rice Root Microbiome to Low Nutrient Environment by Changing Biogeochemical Functions
Seishi IkedaKazuhiro SasakiTakashi OkuboAkifumu YamashitaKimihiro TerasawaZhihua BaoDongyan LiuTakeshi WatanabeJun MuraseSusumu AsakawaShima EdaHisayuki MitsuiTadashi SatoKiwamu Minamisawa
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2014 Volume 29 Issue 1 Pages 50-59

Details
Abstract

Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here, we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha−1, respectively). The LN field had received no N fertilizer for 5 years prior to the experiment. The LN and HN plants showed a 50% decrease and a 60% increase in biomass compared with the SN plant biomass, respectively. Analyses of 16S rRNA genes suggested shifts of bacterial communities between the LN and SN root microbiomes, which were statistically confirmed by metagenome analyses. The relative abundances of Burkholderia, Bradyrhizobium and Methylosinus were significantly increased in root microbiome of the LN field relative to the SN field. Conversely, the abundance of methanogenic archaea was reduced in the LN field relative to the SN field. The functional genes for methane oxidation (pmo and mmo) and plant association (acdS and iaaMH) were significantly abundant in the LN root microbiome. Quantitative PCR of pmoA/mcrA genes and a 13C methane experiment provided evidence of more active methane oxidation in the rice roots of the LN field. In addition, functional genes for the metabolism of N, S, Fe, and aromatic compounds were more abundant in the LN root microbiome. These results suggest that low-N-fertilizer management is an important factor in shaping the microbial community structure containing key microbes for plant associations and biogeochemical processes in paddy rice ecosystems.

Content from these authors
© 2014 by the Japanese Society of Microbial Ecology / the Japanese Society of Soil Microbiology
Previous article Next article
feedback
Top