Skip to main content
Log in

Acropetal leaflet initiation of Eschscholzia californica is achieved by constant spacing of leaflets and differential growth of leaf

Planta Aims and scope Submit manuscript

Abstract

In compound leaves, leaflet primordia are initiated directionally along the lateral sides. Our understanding of the molecular basis of leaflet initiation has improved, but the regulatory mechanisms underlying spatio-temporal patterns remain unclear. In this study, we investigated the mechanisms of acropetal (from the base to the tip) progression of leaflet initiation in Eschscholzia californica. We established an ultraviolet-laser ablation system to manipulate compound-leaf development. Local ablation at the leaflet incipient site generated leaves with asymmetric morphology. In the majority of cases, leaflets that were initiated on the ablated sides shifted apically. Finite time-course observation revealed that the timing of leaflet initiation was delayed, but the distance from the leaf tip did not decrease. These results were suggestive of the local spacing mechanism in leaflet initiation, whereby the distance from the leaf tip and adjacent pre-existing leaflet determines the position of leaflet initiation. To understand how such a local patterning mechanism generates a global pattern of successive leaflet initiation, we assessed the growth rate gradient along the apical–basal axis. Our time-course analysis revealed differential growth rates along the apical–basal axis of the leaf, which can explain the acropetal progression of leaflet initiation. We propose that a leaflet is initiated at a site where the distances from pre-existing leaflets and the leaf tip are sufficient. Furthermore, the differential growth rate may be a developmental factor underlying the directionality of leaflet initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCD:

Charge-coupled device

CLSM:

Confocal laser scanning microscopy

CUC:

CUP-SHAPED COTYLEDON

KNOXI:

Class I KNOTTED1-like homeobox

LD:

Laser diode

ND:

Neutral density

PH:

Pinhole slider

PZ:

Peripheral zone

RGR:

Relative growth rate

SAM:

Shoot apical meristem

References

  • Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–831

    Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832

    Article  CAS  PubMed  Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860

    Article  CAS  PubMed  Google Scholar 

  • Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA 108:3424–3429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322:1835–1839

    Article  CAS  PubMed  Google Scholar 

  • Bourque L, Lacroix C (2011) Lobe-generating centres in the simple leaves of Myriophyllum aquaticum: evidence for KN1-like activity. Ann Bot 107:639–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zeinik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N (2013) A role for APETALA/FRUITFULL transcription factors in tomato leaf development. Plant Cell 25:2070–2083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Busch A, Gleissberg S (2003) EcFLO, a FLORICAULA-like gene from Eschscholzia californica is expressed during organogenesis at the vegetative shoot apex. Planta 217:841–848

    Article  CAS  PubMed  Google Scholar 

  • Champagne C, Sinha N (2004) Compound leaves: equal to the sum of their parts? Development 131:4401–4412

    Article  CAS  PubMed  Google Scholar 

  • Champagne CEM, Goliber TE, Wojciechowski MF, Mei RW, Townsley BT, Wang K, Paz MM, Geeta R, Sinha NR (2007) Compound leaf development and evolution in the legumes. Plant Cell 19:3369–3378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Douady S, Couder Y (1992) Phyllotaxis as a physical self-organized growth process. Phys Rev Lett 68:2098–2101

    Article  PubMed  Google Scholar 

  • Gleissberg S (2004) Comparative analysis of leaf shape development in Eschscholzia californica and other Papaveraceae-Eschscholzioideae. Am J Bot 91:306–312

    Article  PubMed  Google Scholar 

  • Gleissberg S, Kadereit JW (1999) Evolution of leaf morphogenesis: evidence from developmental and phylogenetic data in Papaveraceae. Int J Plant Sci 160:787–794

    Article  Google Scholar 

  • Groot EP, Sinha N, Gleissberg S (2005) Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae). Plant Mol Biol 58:317–331

    Article  CAS  PubMed  Google Scholar 

  • Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Gen 38:942–947

    Article  CAS  Google Scholar 

  • Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jönsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8:e1000516

    Article  PubMed Central  PubMed  Google Scholar 

  • Ikeuchi M, Tatematsu K, Yamaguchi T, Okada K, Tsukaya H (2013) Precocious progression of tissue maturation instructs basipetal initiation of leaflets in Chelidonium majus subsp. asiaticum (Papaveraceae). Am J Bot 100:1116–1126

    Article  PubMed  Google Scholar 

  • Jeune B, Lacroix CR (1993) A quantitative model of leaflet initiation illustrated by Murraya paniculata (Rutaceae). Can J Bot 71:457–465

    Article  Google Scholar 

  • Jeune B, Lacroix CR (2009) A quantitative analysis of leaf growth parameters in Myriophyllum aquaticum (Haloragaceae). Botany 87:807–820

    Article  Google Scholar 

  • Kawamura E, Horiguchi G, Tsukaya H (2010) Mechanisms of leaf tooth formation in Arabidopsis. Plant J 62:429–441

    Article  CAS  PubMed  Google Scholar 

  • Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N (2009) Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136:2997–3006

    Article  CAS  PubMed  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. W. H. Freeman, San Francisco

    Google Scholar 

  • Morita H, Kajiura-Kobayashi H, Takagi C, Yamamoto TS, Nonaka S, Ueno N (2012) Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus. Development 139:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Pabon-Mora N, Sharma B, Holappa LD, Kramer EM, Litt A (2013) The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development. Plant J 74:197–212

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2003) Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073–4083

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2005) Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development 132:15–26

    Article  CAS  PubMed  Google Scholar 

  • Sachs T (1969) Regeneration experiments on the determination of the form of leaves. Israel J Bot 18:21–30

    Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama M, Hara N (1988) Comparative study on early ontogeny of compound leaves in Lardizabalaceae. Am J Bot 75:1598–1605

    Article  Google Scholar 

  • Troll W (1939) Vergleichende Morphologie der höheren Pflanzen I. Band Teil 2. Berlin

  • Tsukaya H (2014) Comparative leaf development in angiosperms. Curr Opin Plant Biol 17:103–109

    Article  PubMed  Google Scholar 

  • Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136:1039–1048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science [Grants-in-Aid for Creative Scientific Research to H.T. (No. 18GS0313) and to K.O. (No. 19GS0315), Scientific Research A to H.T. (No. 17207005), research fellowship to M.I. (21-6773)] and the Ministry of Education, Culture, Sports, Science, and Technology, Japan [Grant-in-Aid for Scientific Research on Innovative Areas to H.T., Scientific Research on Priority Areas to H.T. (No. 19060002) and to K.O. (No. 19060004)] and a grant from the Mitsubishi Foundation to H.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Tsukaya.

Electronic supplementary material

Fig. S1 Developmental time course of leaf primordia after laser irradiation (minority cases). Two loci basal and apical to the irradiated site were re-specified as the second and third leaflets (2 of 16). CLSM images of the leaf primordia before (0 h before) and after (0 h after) laser irradiation, and stereoscopic images of the same primordia at the indicated times after ablation are shown. An untreated leaf that developed immediately after the treated leaf is shown in l. Arrows show leaflet primordia that emerged after ablation, and asterisks indicate the irradiated site. Bars = 0.1 mm (cj) and 5 mm (k)

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 698 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeuchi, M., Igarashi, H., Okada, K. et al. Acropetal leaflet initiation of Eschscholzia californica is achieved by constant spacing of leaflets and differential growth of leaf. Planta 240, 125–135 (2014). https://doi.org/10.1007/s00425-014-2071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2071-9

Keywords

Navigation