• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Suzuki Kenji  鈴木 賢治

ORCIDConnect your ORCID iD *help
… Alternative Names

鈴木 賢治  スズキ ケンジ

Less
Researcher Number 00295578
Other IDs
Affiliation (Current) 2025: 東京科学大学, 総合研究院, 教授
Affiliation (based on the past Project Information) *help 2020 – 2023: 東京工業大学, 科学技術創成研究院, 教授
2017 – 2019: 東京工業大学, 科学技術創成研究院, 特任教授
2002: 愛知県立大, 情報科学部, 助手
1998 – 2001: 愛知県立大学, 情報科学部, 助手
Review Section/Research Field
Principal Investigator
System engineering / Basic Section 52040:Radiological sciences-related / Medical Physics and Radiological Technology
Except Principal Investigator
Medium-sized Section 90:Biomedical engineering and related fields
Keywords
Principal Investigator
雑音除去 / 被曝低減 / CT / 機械学習 / 深層学習 / ニューラルネット / 医用画像 / 医用システム / 学習型システム / 線量低減 … More / 人工知能 / 放射線被曝 / 知的システム / 学習型画像処理 / 演繹的処理 / 帰納的獲得 / 判断獲得 / 診断支援システム / 画像処理フィルタ / 入力情報自動選択 / 学習型信号処理 … More
Except Principal Investigator
遺伝子 / ゲノム / 自家蛍光 / 深層学習 / コンピュータ診断支援 / 画像処理 / 定量化 / 核酸抽出 / 病理標本 / デジタル染色 / 未染色標本 Less
  • Research Projects

    (6 results)
  • Research Products

    (95 results)
  • Co-Researchers

    (5 People)
  •  Development of innovative nucleic acid extraction technology for cancer genomic medicine

    • Principal Investigator
      石川 雅浩
    • Project Period (FY)
      2021 – 2024
    • Research Category
      Grant-in-Aid for Challenging Research (Exploratory)
    • Review Section
      Medium-sized Section 90:Biomedical engineering and related fields
    • Research Institution
      Kindai University
      Saitama Medical University
  •  Radiation dose reduction in medical imaging exams by means of deep-learning-based virtual imaging technologyPrincipal Investigator

    • Principal Investigator
      Suzuki Kenji
    • Project Period (FY)
      2018 – 2021
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 52040:Radiological sciences-related
    • Research Institution
      Tokyo Institute of Technology
  •  Radiation dose reduction in CT by improving the image quality of ultra low dose CT images by means of deep learningPrincipal Investigator

    • Principal Investigator
      鈴木 賢治
    • Project Period (FY)
      2017 – 2018
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Research Field
      Medical Physics and Radiological Technology
    • Research Institution
      Tokyo Institute of Technology
  •  帰納的処理と演繹的処理の統合による知的学習型画像処理システムに関する研究Principal Investigator

    • Principal Investigator
      鈴木 賢治
    • Project Period (FY)
      2002
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      System engineering
    • Research Institution
      Aichi Prefectural University
  •  帰納的な問題解決と演繹的な問題解決を融合する知的学習型システムに関する研究Principal Investigator

    • Principal Investigator
      鈴木 賢治
    • Project Period (FY)
      2000 – 2001
    • Research Category
      Grant-in-Aid for Encouragement of Young Scientists (A)
    • Research Field
      System engineering
    • Research Institution
      Aichi Prefectural University
  •  専門医の非記号系知識を獲得する自律学習成長型医用画像診断システムに関する研究Principal Investigator

    • Principal Investigator
      鈴木 賢治
    • Project Period (FY)
      1998 – 1999
    • Research Category
      Grant-in-Aid for Encouragement of Young Scientists (A)
    • Research Field
      System engineering
    • Research Institution
      Aichi Prefectural University

All 2021 2020 2019 2018 2017

All Journal Article Presentation Book

  • [Book] Biomedical Engineering2021

    • Author(s)
      Suzuki K.
    • Total Pages
      380
    • Publisher
      Jenny Stanford Publishing
    • ISBN
      9789814877633
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Book] Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures2019

    • Author(s)
      Greenspan H., Tanno R., Erdt M., Arbel T., Baumgartner C., Dalca A., Sudre C.H., Wells III W.M., Drechsler K., Linguraru M.G., Oyarzun Laura C., Shekhar R., Wesarg S., Gonzalez Ballester M. A., Suzuki K., Liao H., Wang Q., van Ginneken B., Zhou L.
    • Total Pages
      184
    • Publisher
      Springer International Publishing
    • ISBN
      9783030326890
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Book] Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting2019

    • Author(s)
      Liao H., Balocco S., Wang G., Zhang F., Liu Y., Ding Z., Duong L., Phellan R., Zahnd G., Breininger K., Albarqouni S., Moriconi S., Lee S.-L., Demirci S., Suzuki K., Greenspan H., Wang Q., van Ginneken B., Zhou L.
    • Total Pages
      199
    • Publisher
      Springer International Publishing
    • ISBN
      9783030333270
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Book] Artificial intelligence in decision support systems for diagnosis in medical imaging2018

    • Author(s)
      Chen, Yisong、Suzuki, Kenji
    • Total Pages
      387
    • Publisher
      Springer
    • ISBN
      9783319688428
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Book] Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging2018

    • Author(s)
      Tajbakhsh N. and Suzuki K.
    • Total Pages
      387
    • Publisher
      Springer-Verlag
    • ISBN
      9783319688435
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Book] Emerging Developments and Practices in Oncology2018

    • Author(s)
      Xu J., Zarshenas A., Chen Y., and Suzuki K.
    • Total Pages
      305
    • Publisher
      IGI Global
    • ISBN
      9781522530855
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Book] Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging2018

    • Author(s)
      Suzuki K., Chen Y.
    • Total Pages
      387
    • Publisher
      Springer
    • ISBN
      9783319688428
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Book] Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging2018

    • Author(s)
      Tajbakhsh N. and Suzuki K.
    • Total Pages
      387
    • Publisher
      Springer-Verlag
    • ISBN
      9783319688435
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Book] Emerging Developments and Practices in Oncology2018

    • Author(s)
      Xu J., Zarshenas A., Chen Y., and Suzuki K.
    • Total Pages
      305
    • Publisher
      IGI Global
    • ISBN
      9781522530855
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Book] Image-based Computer-assisted Radiation Therapy2017

    • Author(s)
      Suzuki K
    • Total Pages
      375
    • Publisher
      Springer-Nature
    • ISBN
      9789811029431
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Book] Machine Learning in Medical Imaging (MLMI)2017

    • Author(s)
      Wang Q., Shi Y., Suk H., Suzuki K.
    • Total Pages
      391
    • Publisher
      Springer International Publishing
    • ISBN
      9783319673899
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Journal Article] Artificial Intelligence for Virtual Medical Imaging for Accurate2021

    • Author(s)
      Suzuki K.
    • Journal Title

      Video Proceedings of Advanced Materials

      Volume: 2 Issue: 2 Pages: 2021-03156-2021-03156

    • DOI

      10.5185/vpoam.2021.03156

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Journal Article] スモールデータ深層学習とその医用画像処理・診断支援への応用2020

    • Author(s)
      鈴木賢治
    • Journal Title

      週間医学のあゆみ

      Volume: 274 Pages: 737-742

    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Journal Article] 深層学習による医用画像処理と診断支援2020

    • Author(s)
      鈴木賢治
    • Journal Title

      Precision Medicine

      Volume: 3 Pages: 87-91

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Journal Article] 医用画像システム2020

    • Author(s)
      鈴木賢治
    • Journal Title

      JMAI Letter

      Volume: 2 Pages: 53-54

    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Journal Article] Separation of bones from soft tissue in chest radiographs: Anatomy‐specific orientation‐frequency‐specific deep neural network convolution2019

    • Author(s)
      Zarshenas Amin、Liu Junchi、Forti Paul、Suzuki Kenji
    • Journal Title

      Medical Physics

      Volume: 46 Issue: 5 Pages: 2232-2242

    • DOI

      10.1002/mp.13468

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Journal Article] 人工知能(AI)最新動向 ー 画像処理2019

    • Author(s)
      鈴木賢治
    • Journal Title

      月刊インナービジョン

      Volume: 34 Pages: 35-36

    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Journal Article] 大腸CTにおけるAI支援画像診断2019

    • Author(s)
      鈴木賢治
    • Journal Title

      月刊インナービジョン

      Volume: 34 Pages: 47-50

    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Journal Article] 画像診断領域における深層学習の最先端技術とAI支援画像診断2018

    • Author(s)
      鈴木賢治
    • Journal Title

      Multislice CT 2018 Book (映像情報メディカル増刊号)

      Volume: 50 Pages: 36-46

    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Journal Article] ディープラーニングによる画像処理・認識技術の最前線2018

    • Author(s)
      鈴木賢治
    • Journal Title

      月刊インナービジョン

      Volume: 33 Pages: 30-35

    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Journal Article] Machine Learning in Medical Imaging Before and After Introduction of Deep Learning2017

    • Author(s)
      Suzuki K.
    • Journal Title

      Medical Imaging and Information Sciences

      Volume: 34 Issue: 2 Pages: 14-24

    • DOI

      10.11318/mii.34.14

    • NAID

      130006846726

    • ISSN
      0910-1543, 1880-4977
    • Language
      English
    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Journal Article] Special issue on Machine Learning Applications in Medical Image Analysis2017

    • Author(s)
      El-Baz A., Gimel'farb G., Suzuki K.
    • Journal Title

      Computational and Mathematical Methods in Medicine

      Volume: 2017 Pages: 1-2

    • DOI

      10.1155/2017/2361061

    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Journal Article] Comparing Two Classes of End-to-End Learning Machines for Lung Nodule Detection and Classification: MTANNs vs CNNs2017

    • Author(s)
      Nima Tajbakhsh and Suzuki K.
    • Journal Title

      Pattern Recognition

      Volume: 63 Pages: 476-486

    • DOI

      10.1016/j.patcog.2016.09.029

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Journal Article] Overview of Deep Learning in Medical Imaging2017

    • Author(s)
      Suzuki K.
    • Journal Title

      Radiological Physics and Technology

      Volume: 10 Issue: 3 Pages: 257-273

    • DOI

      10.1007/s12194-017-0406-5

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Journal Article] Deep Learning Applications, Research and Development in Medical Imaging: Introduction2017

    • Author(s)
      Suzuki K.
    • Journal Title

      Medical Imaging Technology

      Volume: 35 Issue: 4 Pages: 177-179

    • DOI

      10.11409/mit.35.177

    • NAID

      130006108057

    • ISSN
      0288-450X, 2185-3193
    • Language
      Japanese
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Journal Article] Survey of Deep Learning Applications to Medical Image Analysis2017

    • Author(s)
      Suzuki K.
    • Journal Title

      Medical Imaging Technology

      Volume: 35 Issue: 4 Pages: 212-226

    • DOI

      10.11409/mit.35.212

    • NAID

      130006108080

    • ISSN
      0288-450X, 2185-3193
    • Language
      Japanese
    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Journal Article] Special issue on Machine Learning in Medical Imaging2017

    • Author(s)
      Suzuki K., Zhou L., Wang Q.
    • Journal Title

      Pattern Recognition

      Volume: 63 Pages: 465-467

    • DOI

      10.1016/j.patcog.2016.10.020

    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] AI Doctor and Smart Medical Imaging with Deep Learning2021

    • Author(s)
      Suzuki K.
    • Organizer
      6th International Conference on Computational Intelligence in Data Mining (ICCIDM 2021)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Virtual High-Radiation-Dose Image Generation from Low-Radiation-Dose Image in Digital Breast Tomosynthesis (DBT) Using Massive-Training Artificial Neural Network (MTANN)2021

    • Author(s)
      Onai Y., Mahdi F. P., Jin Z., and Suzuki K.
    • Organizer
      The 6th International Symposium on Biomedical Engineering (ISBE2021)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Intelligent Medical Image Processing and Analysis with Deep Learning2021

    • Author(s)
      Suzuki K.
    • Organizer
      The 6th International Conference on Communication, Image and Signal Processing (CCISP 2021)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Artificial Intelligence in Computer-aided Diagnosis and Medical Image Processing2021

    • Author(s)
      Suzuki K.
    • Organizer
      The 2021 Artificial Intelligence, Big Data and Algorithms (CAIBDA 2021)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Artificial Intelligence for Virtual Medical Imaging for Accurate Diagnosis2021

    • Author(s)
      Suzuki K.
    • Organizer
      Advanced Materials Congress
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Massive-Training Artificial Neural Network (MTANN) for Image Quality Improving in Fast-Acquisition MRI of the Knee2021

    • Author(s)
      Xiang M., Jin Z., and Suzuki K.
    • Organizer
      The 6th International Symposium on Biomedical Engineering (ISBE2021)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Artificial Intelligence for Medical Image Processing and Diagnosis2021

    • Author(s)
      Suzuki K.
    • Organizer
      4th Artificial Intelligence and Cloud Computing Conference (AICCC 2021)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Massive-Training Artificial Neural Network (MTANN) with Special Kernel for Artifact Reduction In Fast-Acquisition MRI of the Knee2021

    • Author(s)
      Xiang M., Jin Z., and Suzuki K.
    • Organizer
      2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] 機械・深層学習による画像処理とパターン認識:-医用画像処理・診断支援を例に-2021

    • Author(s)
      鈴木賢治
    • Organizer
      第139回フロンティア材料研究所講演会
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] AIによる肺がんの画像処理・診断支援2021

    • Author(s)
      鈴木賢治
    • Organizer
      第62回日本肺癌学会学術集会
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] メディカルAIイメージングとAI支援画像診断2021

    • Author(s)
      鈴木賢治
    • Organizer
      第2回最先端研究セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Artificial Intelligence in Diagnosis of Cancer with Medical Images2020

    • Author(s)
      Suzuki K.
    • Organizer
      Webinar on Cancer Research
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] ディープラーニングによる検診のためのAI支援画像診断と医用画像処理2020

    • Author(s)
      鈴木賢治
    • Organizer
      第28回日本CT検診学会学術集会
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] AI in Medical Image Processing and Diagnosis of Chest2020

    • Author(s)
      Suzuki K.
    • Organizer
      The 12th Annual Meeting of Japanese Society of Pulmonary Functional Imaging
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Fast Acquisition MRI of the Knee by Means of Massive-Training Artificial Neural Network (MTANN) with Special Kernel2020

    • Author(s)
      Xiang M., Jin Z., and Suzuki K.
    • Organizer
      European Congress of Radiology 2021
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Translational Research in Medical Image Processing with Deep Learning and AI-aided Diagnosis2020

    • Author(s)
      Suzuki K.
    • Organizer
      2nd Annual Meeting of Japanese Association for Medical Artificial Intelligence
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] ディープ・ラーニングによるスマート医用画像処理・診断支援2020

    • Author(s)
      鈴木賢治
    • Organizer
      第5回Advanced Medical Imaging 研究会
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Generation of Virtual High-Radiation-Dose Images from Low-Dose Images in Digital Breast Tomosynthesis (DBT) with Massive-Training Artificial Neural Network (MTANN)2020

    • Author(s)
      Onai Y., Jin Z., and Suzuki K.
    • Organizer
      European Congress of Radiology 2021
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Cutting-edge and Translational Research in Medical Image Processing with Deep Learning and AI-aided Diagnosis2020

    • Author(s)
      Suzuki K.
    • Organizer
      3rd Annual Meeting of Japanese Gastrointestinal Virtual Reality Association
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning for Medical Image Processing, Patten Recognition, and Diagnosis2020

    • Author(s)
      Suzuki K.
    • Organizer
      3rd Artificial Intelligence and Cloud Computing Conference (AICCC 2020)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Neural Network Convolution (NNC) Deep Learning for Radiation Dose Reduction in Digital Breast Tomosynthesis (DBT)2020

    • Author(s)
      Y. Onai, Z. Jin, T. Obi and K. Suzuki
    • Organizer
      Proceedings of Annual Meeting of Research Center for Biomedical Engineering 2019
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Medical Imaging & AI - Fundamentals2020

    • Author(s)
      Suzuki K.
    • Organizer
      46th Winter School of Optical Society of Japan
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] AI Doctor and Smart Medical Imaging with Deep Learning2019

    • Author(s)
      Kenji Suzuki
    • Organizer
      2019 3rd International Conference on Artificial Intelligence, Automation and Control Technologies (AIACT 2019)
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] 世間の流行に左右されない深層学習所感2019

    • Author(s)
      鈴木賢治
    • Organizer
      第38回日本医用画像工学会大会 (JAMIT 2019)
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning-based AI in Medical Image Processing and Computer-aided Diagnosis2019

    • Author(s)
      Suzuki K.
    • Organizer
      International Conference on Alzheimer’s Disease & Dementia (Alzheimer 2019)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning for Image Processing, Patten Recognition, and Diagnosis in Medicine2019

    • Author(s)
      Suzuki K.
    • Organizer
      2nd Artificial Intelligence and Cloud Computing Conference (AICCC 2019)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Neural Network Convolution Deep Learning for Semantic Segmentation of Breast Tumor in MRI2019

    • Author(s)
      Wang Y., Jin Z., Tokuda Y., Naoi Y., Tomiyama N., Suzuki K.
    • Organizer
      Proc. of 4th International Symposium on Biomedical Engineering (ISBE2019)
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Measuring System Entropy with a Deep Recurrent Neural Network Model2019

    • Author(s)
      Martinez-Garcia M., Zhang Y., Suzuki K., and Zhang Y.
    • Organizer
      Proc. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning-based AI in Medical Image Processing and Computer-aided Diagnosis2019

    • Author(s)
      Suzuki K.
    • Organizer
      2nd International Conference on Medical Imaging and Case Reports (MICR 2019)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning in Medical Image Processing, Pattern Recognition, and Diagnosis2019

    • Author(s)
      Suzuki K.
    • Organizer
      International Conference on Computing and Pattern Recognition (ICCPR 2019)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Radiation dose reduction in chest CT at a micro-dose (mD) level by noise simulation and noise-specific anatomic neural network convolution (NNC) deep-learning (DL) with K-means clustering2019

    • Author(s)
      Zhao Y., Zarshenas A., Higaki T., Awai K., and Suzuki K.
    • Organizer
      Program of Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Virtual Dual-Energy Chest Imaging2019

    • Author(s)
      Suzuki K.
    • Organizer
      2019 AAPM Summer School - Practical Medical Image Analysis
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Introduction to Machine Learning I - Traditional Methods2019

    • Author(s)
      Suzuki K.
    • Organizer
      2019 AAPM Summer School - Practical Medical Image Analysis
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Smart Medical Image Processing and Diagnostic Aid with Deep-Learning-Driven-AI2019

    • Author(s)
      Suzuki K.
    • Organizer
      1st International Promotion Forum for Super Smart Society
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] AI Doctor and Smart Medical Imaging with Deep Learning2019

    • Author(s)
      Suzuki K.
    • Organizer
      2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS 2019)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Development of Deep-learning Segmentation for Breast Cancer in MR Images based on Neural Network Convolution2019

    • Author(s)
      Wang Y., Jin Z., Tokuda Y., Naoi Y., Tomiyama N., and Suzuki K.
    • Organizer
      International Conference on Computing and Pattern Recognition (ICCPR 2019)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] AI Doctor and Smart Medical Imaging with Deep Learning2019

    • Author(s)
      Suzuki K.
    • Organizer
      2019 3rd International Conference on Artificial Intelligence, Automation and Control Technologies (AIACT 2019)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Sequential Neural Network Convolution (NNC) Deep Learning in Radiation Dose Reduction in Digital Breast Tomosynthesis (DBT): Preliminary Results.2018

    • Author(s)
      Liu J., Zarshenas A., Wei Z., Yang L., Fajardo L., and Suzuki K.
    • Organizer
      Proc. International Conference on IEEE Engineering in Medicine & Biology Society (IEEE EMBC)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning and Its Advanced Applications in Medical Image Processing, Analysis, and Diagnosis2018

    • Author(s)
      Kenji Suzuki
    • Organizer
      3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS 2018)
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning in Medical Image Processing, Analysis and Diagnosis,2018

    • Author(s)
      Kenji Suzuki
    • Organizer
      The 2nd International Summer School on Deep Learning (DeepLearn 2018)
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] “Virtual” High-Dose Technology: Radiation Dose Reduction in Thin-Slice Chest CT at a Micro-Dose (mD) Level by Means of 3D Deep Neural Network Convolution (NNC).2018

    • Author(s)
      Zarshenas A., Zhao Y., Liu J., Higaki T., Awai K., and Suzuki K.
    • Organizer
      Program of Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA), 2018
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Neural Network Convolution for Natural Image Denoising.2018

    • Author(s)
      Zarshenas A., and Suzuki K.
    • Organizer
      IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Reduction in training time of a deep learning (DL) model in radiomics analysis of lesions in CT.2018

    • Author(s)
      Makkinejad N., Tajbakhsh N., Zarshenas A., Khokhar A., and Suzuki K.
    • Organizer
      SPIE Medical Imaging (SPIE MI)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Radiation dose reduction in digital breast tomosynthesis (DBT) by means of deep-learning-based supervised image processing.2018

    • Author(s)
      Liu J., Zarshenas A., Wei Z., Yang L., Fajardo L., and Suzuki K.
    • Organizer
      SPIE Medical Imaging (SPIE MI)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Radiation dose reduction in digital breast tomosynthesis (DBT) by means of deep-learning-based supervised image processing.2018

    • Author(s)
      Liu J., Zarshenas A., Wei Z., Yang L., Fajardo L., and Suzuki K.
    • Organizer
      Proc. SPIE Medical Imaging (SPIE MI)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Radiation dose reduction in digital breast tomosynthesis (DBT) by means of neural network convolution (NNC) deep learning.2018

    • Author(s)
      Liu J., Zarshenas A., Qadir S, Yang L., Fajardo L., and Suzuki K.
    • Organizer
      Proc. International Workshop on Breast Imaging (IWBI)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Reduction in training time of a deep learning (DL) model in radiomics analysis of lesions in CT.2018

    • Author(s)
      Makkinejad N., Tajbakhsh N., Zarshenas A., Khokhar A., and Suzuki K.
    • Organizer
      Proc. SPIE Medical Imaging (SPIE MI)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning for Image Processing2018

    • Author(s)
      Kenji Suzuki
    • Organizer
      2018 IEEE SPS Winter School on Big Data and Deep Learning in Healthcare
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Historical Overview of Machine Learning (ML) and Deep Learning in Medical Image Analysis - What are the Sources of the Power of Deep Learning?2018

    • Author(s)
      Suzuki K., Zarshenas A., Liu J., Zhao Y., and Luo Y.
    • Organizer
      Program of Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA), 2018
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Introduction to Deep Learning2018

    • Author(s)
      Kenji Suzuki
    • Organizer
      2018 IEEE SPS Winter School on Big Data and Deep Learning in Healthcare
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Overview of Deep Learning and Its Advanced Applications in Medical Image Processing, Analysis, and Diagnosis2018

    • Author(s)
      Kenji Suzuki
    • Organizer
      7th International Conference on Informatics, Electronics & Vision (ICIEV) & 2nd International Conference on Imaging, Vision & Pattern Recognition (IVPR)
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Effect of Simulated Micro-Dose (mD) CT on the Performance of Neural Network Convolution (NNC) Deep-Learning (DL) In Radiation Dose Reduction in Chest CT.2018

    • Author(s)
      Zhao Y., Zarshenas A., Higaki T., Awai K., and Suzuki K.
    • Organizer
      Program of Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA), 2018
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep 3D Anatomy-Specific Neural Network Convolution for Radiation Dose Reduction in Chest CT at a Micro-Dose Level.2018

    • Author(s)
      Zarshenas A., Zhao Y., Liu J., Higaki T., Fukumoto W., Awai K., and Suzuki K.:
    • Organizer
      Proc. International Conference on IEEE Engineering in Medicine & Biology Society (IEEE EMBC),
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning-based AI in Medical Image Processing and Computer-aided Diagnosis, International Forum on Intelligent Medical Image Analysis2018

    • Author(s)
      Kenji Suzuki
    • Organizer
      Tsinghua University
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep Learning in Medical Image Processing and Diagnosis,2018

    • Author(s)
      Kenji Suzuki
    • Organizer
      5th International Conference on Computational Science and Technology 2018 (ICCST2018)
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Mixture of Deep-Learning Experts for Separation of Bones from Soft Tissue in Chest Radiographs.2018

    • Author(s)
      Zarshenas A., Liu J., Forti P., and Suzuki K.
    • Organizer
      IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2018)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] IEEE SPS winter school program2018

    • Author(s)
      Kenji Suzuki
    • Organizer
      IEEE Signal Processing Society (SPS) Malaysia Chapter
    • Invited
    • Data Source
      KAKENHI-PROJECT-18H02761
  • [Presentation] Deep and Shallow Machine Learning in Medical Image Analysis and Diagnosis.2017

    • Author(s)
      Suzuki K.
    • Organizer
      IEEE 5th Workshop on Data Mining in Biomedical Informatics and Health (DMBIH)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Virtual High-Dose (VHD) Technology: Radiation Dose Reduction in Digital Breast Tomosynthesis (DBT) by Means of Supervised Deep-Learning Image Processing (DLIP).2017

    • Author(s)
      Liu J., Zarshenas A., Wei Z., Yang L., Fajardo L. L., and Suzuki K.
    • Organizer
      Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] How Deep Should We Go with Deep Learning in Medical Image Analysis?2017

    • Author(s)
      Tajbakhsh N., Zarshenas A., Liu J., and Suzuki K.
    • Organizer
      Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Neural Network Convolution (NNC) for Converting Ultra-Low-Dose to "Virtual" High-Dose CT Images.2017

    • Author(s)
      Suzuki K., Liu J., Zarshenas A., Higaki T., Fukumoto W., and Awai K.
    • Organizer
      International Workshop on Machine Learning in Medical Imaging (MLMI)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Recent Advances in Medical Image Understanding and Diagnosis with Artificial Intelligence.2017

    • Author(s)
      Suzuki K.
    • Organizer
      Hiroshima Medical Engineering School (hBMEs)
    • Invited
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Radiation Dose Reduction in Thin-Slice Chest CT at a Micro-Dose (mD) Level by Means of 3D Deep Neural Network Convolution (NNC).2017

    • Author(s)
      Zarshenas A., Zhao Y., Liu J., Higaki T., Awai K., and Suzuki K.
    • Organizer
      Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] What Was Changed in Machine Learning (ML) in Medical Image Analysis After the Introduction of Deep Learning?2017

    • Author(s)
      Suzuki K., Zarshenas A., Liu J., Zhao Y., and Luo Y.
    • Organizer
      Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Detection of Solid Pulmonary Nodules in Micro-Dose CT (mDCT) with "Virtual" Higher-Dose (vHD) CT Technology: An Observer Performance Study.2017

    • Author(s)
      Fukumoto W., Suzuki K., Higaki T., Zhao Y., Zarshenas A., and Awai K.
    • Organizer
      Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Two Deep-Learning Models for Lung Nodule Detection and Classification in CT: Convolutional Neural Network (CNN) vs Neural Network Convolution (NNC).2017

    • Author(s)
      Tajbakhsh N., Zarshenas A., Liu J., and Suzuki K.
    • Organizer
      Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Computer-Based Interactive Demonstration and Comparative Study: Virtual Full-Dose (VFD) Digital Breast Tomosynthesis (DBT) Images Derived From Reduced-Dose Acquisitions versus Clinical Full-Dose DBT Images.2017

    • Author(s)
      Liu J., Zarshenas A., Wei Z., Yang L., Fajardo L. L., and Suzuki K.
    • Organizer
      Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • [Presentation] Investigating the Depth of Convolutional Neural Networks (CNNs) in Computer-aided Detection and Classification of Focal Lesions: Lung Nodules in Thoracic CT and Colorectal Polyps in CT Colonography.2017

    • Author(s)
      Tajbakhsh N., Zarshenas A., Liu J., and Suzuki K.
    • Organizer
      Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17H06679
  • 1.  粟井 和夫 (30294573)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 4 results
  • 2.  小尾 高史 (40280995)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 1 results
  • 3.  石川 雅浩 (70540417)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  小林 直樹 (40523634)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 5.  橋口 明典 (50276218)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi