• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mishou Hidehiko  見正 秀彦

ORCIDConnect your ORCID iD *help
… Alternative Names

見正 秀彦  ミショウ ヒデヒコ

Less
Researcher Number 10435456
Other IDs
Affiliation (Current) 2025: 東京電機大学, システムデザイン工学部, 教授
Affiliation (based on the past Project Information) *help 2018 – 2023: 東京電機大学, システムデザイン工学部, 教授
2017: 東京電機大学, システムデザイン工学部, 准教授
2013 – 2016: 東京電機大学, 情報環境学部, 准教授
2006 – 2007: 宇部工業高等専門学校, 一般科, 講師
Review Section/Research Field
Principal Investigator
Algebra / Basic Section 11010:Algebra-related
Except Principal Investigator
Basic Section 11010:Algebra-related
Keywords
Principal Investigator
値分布 / 普遍性 / ゼータ関数 / 解析的整数論 / 数論的ゼータ関数 / Riemann zeta 関数 / 密度関数 / Selberg zeta 関数 / 多重ゼータ関数 / 稠密性 / 零点分布 / 関数論 / 代数学 … More
Except Principal Investigator
… More Hurwitz ゼータ関数 / 周期積分 / 明示公式 / 関数関係式 / Schur 多重ゼータ関数 / ルート系のゼータ関数 / 混合普遍性 / 離散普遍性 / 特殊値 / 漸近挙動 / 実零点 / L関数 / 普遍性定理 / M 関数 / 普遍性 / ルート系 / 値分布 / 多重ゼータ関数 / L 関数 / ゼータ関数 Less
  • Research Projects

    (5 results)
  • Research Products

    (15 results)
  • Co-Researchers

    (3 People)
  •  多角的な観点から見たゼータ関数の値分布Principal Investigator

    • Principal Investigator
      見正 秀彦
    • Project Period (FY)
      2019 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Tokyo Denki University
  •  The analytic theory of arithmetic L-functions and multiple zeta-functions

    • Principal Investigator
      Matsumoto Kohji
    • Project Period (FY)
      2018 – 2021
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Nagoya University
  •  Independence of arithmetic zeta functionsPrincipal Investigator

    • Principal Investigator
      MISHO Hidehiko
    • Project Period (FY)
      2016 – 2018
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Research Field
      Algebra
    • Research Institution
      Tokyo Denki University
  •  On correlation among some properties of arithmetic zeta functionsPrincipal Investigator

    • Principal Investigator
      Mishou Hidehiko
    • Project Period (FY)
      2013 – 2015
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      Tokyo Denki University
  •  普遍性を主題としたDirichlet級数の解析の性質の解明Principal Investigator

    • Principal Investigator
      見正 秀彦
    • Project Period (FY)
      2006 – 2007
    • Research Category
      Grant-in-Aid for Young Scientists (Start-up)
    • Research Field
      Algebra
    • Research Institution
      Ube National College of Technology

All 2021 2018 2017 2016 2014 2013 2007 Other

All Journal Article Presentation

  • [Journal Article] Joint universality theorem of Selberg zeta functions for principal congruence subgroups2021

    • Author(s)
      Hidehiko Mishou
    • Journal Title

      Journal of Number Theory

      Volume: 227(3) Pages: 235-264

    • DOI

      10.1016/j.jnt.2021.03.009

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K03455
  • [Journal Article] The joint universality for pairs of zeta functions in the Selberg class2017

    • Author(s)
      Hidehiko Mishou and Hirofumi Nagoshi
    • Journal Title

      Acta Mathematica Hungarica

      Volume: 151(2) Issue: 2 Pages: 282-327

    • DOI

      10.1007/s10474-017-0696-4

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-16K05075
  • [Journal Article] Joint universality for Dirichlet L-functions and zeros of their linear combinations in the χ -aspect2017

    • Author(s)
      Hidehiko Mishou and Hirofumi Nagoshi
    • Journal Title

      Monatshefte fur Mathematik

      Volume: 183(2) Issue: 2 Pages: 329-355

    • DOI

      10.1007/s00605-016-0996-8

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-16K05075
  • [Journal Article] Joint universality theorems for pairs of automorphic zeta functions2014

    • Author(s)
      Hidehiko Mishou
    • Journal Title

      Mathematische Zeitschrift

      Volume: 印刷中

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25800031
  • [Journal Article] Functional distribution for a collection of Lerch zeta functions2014

    • Author(s)
      Hidehiko Mishou
    • Journal Title

      Journal of Mathematical Society of Japan

      Volume: 印刷中

    • NAID

      130004705995

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25800031
  • [Journal Article] Joint value distribution of the Riemann zeta function and Hurwitz zeta functions2007

    • Author(s)
      Hidehiko Mishou
    • Journal Title

      Lithuanian Mathematical Journal Vol.47,no.1

      Pages: 32-47

    • Data Source
      KAKENHI-PROJECT-18840043
  • [Journal Article] Joint value distribution of the Riemann zeta function and Hurwitz zeta functions II

    • Author(s)
      Hidehiko Mishou
    • Journal Title

      Archiv der Mathematik (掲載確定)

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18840043
  • [Presentation] Joint denseness of Hurwitz zeta functions with algebraic irrational parameters in Rs>12018

    • Author(s)
      Hidehiko Misho and Yoonbok Lee
    • Organizer
      International Conference on Number Theory dedicated to the 70th birthdays of Professors Antanas Laurincikas
    • Data Source
      KAKENHI-PROJECT-16K05075
  • [Presentation] On value-distribution of Euler-Zagier double sum at non-trivial zeros of the Riemann zeta function2017

    • Author(s)
      Hidehiko Mishou
    • Organizer
      研究集会“多重ゼータ関数の諸相”(於 名古屋大学)
    • Data Source
      KAKENHI-PROJECT-16K05075
  • [Presentation] On discrete universality of Hurwitz zeta functions2016

    • Author(s)
      Hidehiko Mishou
    • Organizer
      研究集会「解析的整数論の諸問題と展望」
    • Place of Presentation
      京都大学数理解析研究所(京都府京都市)
    • Year and Date
      2016-10-31
    • Data Source
      KAKENHI-PROJECT-16K05075
  • [Presentation] Joint discrete value-distribution of Dirichlet L-functions at horizontal shifts of non-trivial zeros of the Riemann zeta function2016

    • Author(s)
      Hidehiko Mishou
    • Organizer
      The 6th international conference analytic and probabilistic methods in Number Theory
    • Place of Presentation
      Conference center "Romuva" of the Vilnius University in Lithuania
    • Year and Date
      2016-09-11
    • Data Source
      KAKENHI-PROJECT-16K05075
  • [Presentation] 実指標 Dirichlet L 関数間の同時 d - 普遍性と類数たちの多次元稠密性2014

    • Author(s)
      見正秀彦,名越弘文(発表者は見正)
    • Organizer
      日本数学会 2014年秋季総合分科会 代数学分科会 一般講演
    • Place of Presentation
      広島大学(広島県東広島市)
    • Year and Date
      2014-09-25
    • Data Source
      KAKENHI-PROJECT-25800031
  • [Presentation] ゼータ関数の普遍性の概要2014

    • Author(s)
      見正秀彦
    • Organizer
      日本数学会 2014年秋季総合分科会 代数学分科会 特別講演
    • Place of Presentation
      広島大学(広島県東広島市)
    • Year and Date
      2014-09-25
    • Invited
    • Data Source
      KAKENHI-PROJECT-25800031
  • [Presentation] A new method to prove joint universality for zeta functions2013

    • Author(s)
      Hidehiko Mishou
    • Organizer
      Palanga Conference in Combinatroics and Number Theory
    • Place of Presentation
      Palanga, Lithuania
    • Data Source
      KAKENHI-PROJECT-25800031
  • [Presentation] 同時普遍性を持つ任意個数の保型L関数たちの例2013

    • Author(s)
      名越弘文(群馬大学)(講演者)、見正秀彦
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      愛媛大学
    • Data Source
      KAKENHI-PROJECT-25800031
  • 1.  Matsumoto Kohji (60192754)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  鈴木 正俊 (30534052)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  小森 靖 (80343200)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi