• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Yobuko Fuetaro  呼子 笛太郎

ORCIDConnect your ORCID iD *help
Researcher Number 10825095
Affiliation (Current) 2025: 東京理科大学, 創域理工学部数理科学科, 助教
Affiliation (based on the past Project Information) *help 2024: 東京理科大学, 創域理工学部数理科学科, 助教
2019 – 2023: 名古屋大学, 多元数理科学研究科, 特任助教
Review Section/Research Field
Principal Investigator
Basic Section 11010:Algebra-related
Keywords
Principal Investigator
カラビヤウ多様体 / F-特異点 / 準F-分裂 / 数論幾何 / 正標数の代数幾何 / 正標数における変形理論 / 変形理論 / Witt環 / 特異点 / 強F-正則 … More / del Pezzo曲面 / 有理二重点 / 正標数 / ファノ多様体 / 準フロベニウス分裂 / フロベニウス分裂 / Hodge-Witt / 準F-正則 / F-正則 / klt特異点 / ファノ / カラビヤウ / F-分裂 Less
  • Research Projects

    (2 results)
  • Research Products

    (20 results)
  •  準F-分裂理論による正標数代数多様体の幾何学的性質と数論的性質の研究Principal Investigator

    • Principal Investigator
      呼子 笛太郎
    • Project Period (FY)
      2024 – 2028
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Tokyo University of Science
  •  On p-adic properties and algebro-geometric properties of algebraic variety in positive characteristicPrincipal Investigator

    • Principal Investigator
      Yobuko Fuetaro
    • Project Period (FY)
      2019 – 2023
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Nagoya University

All 2024 2023 2022 2021 2020 2019

All Journal Article Presentation

  • [Journal Article] Mass formula and Oort's conjecture for supersingular abelian threefolds2021

    • Author(s)
      Karemaker Valentijn、Yobuko Fuetaro、Yu Chia-Fu
    • Journal Title

      Advances in Mathematics

      Volume: 386 Pages: 107812-107812

    • DOI

      10.1016/j.aim.2021.107812

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Journal Article] Degenerations of log Hodge de Rham spectral sequences, log Kodaira vanishing theorem in characteristic $$p>0$$ and log weak Lefschetz conjecture for log crystalline cohomologies2021

    • Author(s)
      Nakkajima Yukiyoshi、Yobuko Fuetaro
    • Journal Title

      European Journal of Mathematics

      Volume: 7 Issue: 4 Pages: 1537-1615

    • DOI

      10.1007/s40879-021-00475-8

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K14501, KAKENHI-PROJECT-18H03667
  • [Presentation] 準F分裂について2024

    • Author(s)
      呼子笛太郎
    • Organizer
      正標数の可換環論とその周辺 2024 in 淡路島
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Hodge-Witt and quasi-Frobenius-splitting2023

    • Author(s)
      呼子 笛太郎
    • Organizer
      K3, Enriques Surfaces, and Related Topics
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Quasi-F-splitting and klt singularities2023

    • Author(s)
      呼子笛太郎
    • Organizer
      第 19 回北陸数論研究集会 「超幾何関数の数論とその周辺
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] 準フロベニウス分裂について2023

    • Author(s)
      呼子笛太郎
    • Organizer
      東京理科大学談話会
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] 準F-分裂について2023

    • Author(s)
      呼子笛太郎
    • Organizer
      阪大代数幾何学セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] 準F分裂について2023

    • Author(s)
      呼子笛太郎
    • Organizer
      湯布院代数幾何学ワークショップ
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Quasi-F-splitting and Hodge-Witt2023

    • Author(s)
      呼子笛太郎
    • Organizer
      東大代数幾何セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] 準F-分裂とklt特異点2023

    • Author(s)
      呼子笛太郎
    • Organizer
      東北大学代数セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] 準F-分裂とklt特異点2023

    • Author(s)
      呼子笛太郎
    • Organizer
      野田代数幾何学シンポジウム2023
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] F-splitting, canonical lifting and Hodge-Wittness2022

    • Author(s)
      呼子 笛太郎
    • Organizer
      p-adic cohomology and arithmetic geometry 2022
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Quasi-Frobenius-split and Serre-Tate theory2021

    • Author(s)
      呼子 笛太郎
    • Organizer
      名古屋大学代数幾何学セミナー
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Quasi-F-split and surface singularities2021

    • Author(s)
      呼子 笛太郎
    • Organizer
      Degenerations and models of algebraic varieties and related topics
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Quasi-Frobenius splittingの局所的研究2020

    • Author(s)
      呼子 笛太郎
    • Organizer
      第65回代数学シンポジウム
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Rational double points in low characteristic and quasi- F-splitting2020

    • Author(s)
      呼子 笛太郎
    • Organizer
      Singularities and Arithmetics
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Quasi-Frobenius-splitting and rational double points in positive characteristic2020

    • Author(s)
      呼子 笛太郎
    • Organizer
      東大京大代数幾何セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Quasi-F-splitting and two dimensional singularities2020

    • Author(s)
      呼子 笛太郎
    • Organizer
      城崎代数幾何学シンポジウム 2020
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Quasi-Frobenius-split and Achinger-Zdanowicz construction2019

    • Author(s)
      呼子 笛太郎
    • Organizer
      Younger generations in Algebraic and Complex geometry VI
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501
  • [Presentation] Quasi-Frobenius-split and Serre-Tate theory2019

    • Author(s)
      呼子 笛太郎
    • Organizer
      慶應義塾大学 代数セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K14501

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi