• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Sugawara Saku  菅原 朔

ORCIDConnect your ORCID iD *help
Researcher Number 10855894
Affiliation (Current) 2025: 国立情報学研究所, コンテンツ科学研究系, 助教
Affiliation (based on the past Project Information) *help 2025: 国立情報学研究所, コンテンツ科学研究系, 助教
2020 – 2023: 国立情報学研究所, コンテンツ科学研究系, 助教
Review Section/Research Field
Principal Investigator
Basic Section 61030:Intelligent informatics-related / 1001:Information science, computer engineering, and related fields
Keywords
Principal Investigator
計算言語学 / 自然言語処理 / 文章読解 / 自然言語理解 / 談話理解 / 質問応答 / 機械読解 / 言語理解
  • Research Projects

    (3 results)
  • Research Products

    (13 results)
  • Co-Researchers

    (1 People)
  •  生得原理の探究による自然な言語獲得モデルの構築Principal Investigator

    • Principal Investigator
      菅原 朔
    • Project Period (FY)
      2025 – 2026
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 61030:Intelligent informatics-related
    • Research Institution
      National Institute of Informatics
  •  Constructing Reading Comprehension Datasets to Evaluate Discourse-level Language UnderstandingPrincipal Investigator

    • Principal Investigator
      菅原 朔
    • Project Period (FY)
      2022 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 61030:Intelligent informatics-related
    • Research Institution
      National Institute of Informatics
  •  Creating Auxiliary Questions for Explainable Evaluation of Machine Reading ComprehensionPrincipal Investigator

    • Principal Investigator
      Sugawara Saku
    • Project Period (FY)
      2020 – 2022
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Review Section
      1001:Information science, computer engineering, and related fields
    • Research Institution
      National Institute of Informatics

All 2023 2022 2021

All Journal Article

  • [Journal Article] Which Shortcut Solution Do Question Answering Models Prefer to Learn?2023

    • Author(s)
      Kazutoshi Shinoda, Saku Sugawara, Akiko Aizawa
    • Journal Title

      Proceedings of the 37th AAAI Conference on Artificial Intelligence

      Volume: 1

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17954
  • [Journal Article] PROPRES: Investigating the Projectivity of Presupposition with Various Triggers and Environments2023

    • Author(s)
      Asami Daiki、Sugawara Saku
    • Journal Title

      Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)

      Volume: 1 Pages: 122-137

    • DOI

      10.18653/v1/2023.conll-1.9

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17954
  • [Journal Article] Evaluating the Rationale Understanding of Critical Reasoning in Logical Reading Comprehension2023

    • Author(s)
      Kawabata Akira、Sugawara Saku
    • Journal Title

      Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

      Volume: 1 Pages: 116-143

    • DOI

      10.18653/v1/2023.emnlp-main.9

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17954
  • [Journal Article] On Degrees of Freedom in Defining and Testing Natural Language Understanding2023

    • Author(s)
      Sugawara Saku、Tsugita Shun
    • Journal Title

      Findings of the Association for Computational Linguistics: ACL 2023

      Volume: 1 Pages: 13625-13649

    • DOI

      10.18653/v1/2023.findings-acl.861

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17954
  • [Journal Article] Analyzing the Effectiveness of the Underlying Reasoning Tasks in Multi-hop Question Answering2023

    • Author(s)
      Ho Xanh、Duong Nguyen Anh-Khoa、Sugawara Saku、Aizawa Akiko
    • Journal Title

      Findings of the Association for Computational Linguistics: EACL 2023

      Volume: 1 Pages: 1163-1180

    • DOI

      10.18653/v1/2023.findings-eacl.87

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17954, KAKENHI-PROJECT-21H03502
  • [Journal Article] 読解問題における論理推論の一貫性評価2023

    • Author(s)
      川畑輝, 菅原朔
    • Journal Title

      言語処理学会 第29回年次大会 発表論文集

      Volume: - Pages: 2914-2919

    • Open Access
    • Data Source
      KAKENHI-PROJECT-20K23335
  • [Journal Article] Penalizing Confident Predictions on Largely Perturbed Inputs Does Not Improve Out-of-Distribution Generalization in Question Answering2023

    • Author(s)
      Kazutoshi Shinoda, Saku Sugawara, Akiko Aizawa
    • Journal Title

      Proceedings of the Workshop on Knowledge Augmented Methods for NLP

      Volume: 1

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17954
  • [Journal Article] How Well Do Multi-hop Reading Comprehension Models Understand Date Information?2022

    • Author(s)
      Xanh Ho, Saku Sugawara, Akiko Aizawa
    • Journal Title

      Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing

      Volume: 1 Pages: 470-479

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17954
  • [Journal Article] Look to the Right: Mitigating Relative Position Bias in Extractive Question Answering2022

    • Author(s)
      Kazutoshi Shinoda, Saku Sugawara, Akiko Aizawa
    • Journal Title

      Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

      Volume: 1 Pages: 418-425

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17954
  • [Journal Article] Possible Stories: Evaluating Situated Commonsense Reasoning under Multiple Possible Scenarios2022

    • Author(s)
      Mana Ashida, Saku Sugawara
    • Journal Title

      Proceedings of the 29th International Conference on Computational Linguistics

      Volume: 1 Pages: 3606-3630

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-22K17954
  • [Journal Article] Can Question Generation Debias Question Answering Models? A Case Study on Question-Context Lexical Overlap.2021

    • Author(s)
      Kazutoshi Shinoda, Saku Sugawara, Akiko Aizawa
    • Journal Title

      The 3rd Workshop on Machine Reading for Question Answering (MRQA), at the 2021 conference on Empirical Methods in Natural Language Processing (EMNLP)

      Volume: - Pages: 63-72

    • DOI

      10.18653/v1/2021.mrqa-1.6

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-21H03502, KAKENHI-PROJECT-20K23335
  • [Journal Article] Benchmarking Machine Reading Comprehension: A Psychological Perspective2021

    • Author(s)
      Saku Sugawara, Pontus Stenetorp, Akiko Aizawa
    • Journal Title

      Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

      Volume: 1 Pages: 1592-1612

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K23335
  • [Journal Article] Improving the Robustness of QA Models to Challenge Sets with Variational Question-Answer Pair Generation2021

    • Author(s)
      Shinoda Kazutoshi、Sugawara Saku、Aizawa Akiko
    • Journal Title

      Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

      Volume: - Pages: 197-214

    • DOI

      10.18653/v1/2021.acl-srw.21

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-20K23335
  • 1.  相澤 彰子
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi