• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Tadano Homare  只野 誉

… Alternative Names

只野 誉  タダノ ホマレ

Less
Researcher Number 20772396
Other IDs
  • ORCIDhttps://orcid.org/0000-0002-4961-8800
Affiliation (Current) 2022: 山口大学, 大学院創成科学研究科 , 講師
Affiliation (based on the past Project Information) *help 2020 – 2022: 山口大学, 大学院創成科学研究科, 講師
2018 – 2019: 東京理科大学, 理学部第一部数学科, 助教
Review Section/Research Field
Principal Investigator
Basic Section 11020:Geometry-related
Keywords
Principal Investigator
Bakry-Emery Ricci 曲率 / 変形 Bakry-Emery Ricci 曲率 / Myers の定理 / Bochner-Weitzenbock 公式 / Laplacian 比較定理 / Riccati 不等式 / Witten ラプラシアン / Ricci フロー / Ricci ソリトン / 直径評価 … More / スカラー曲率 / Hitchin-Thorpe 不等式 / 平均曲率流 / 佐々木多様体 / 佐々木-Ricci ソリトン / 佐々木-Einstein 多様体 / 佐々木-Ricci フロー / K-接触多様体 / Riemann 葉層 / Ricci 曲率 / 積分 Ricci 曲率 / 直交 Ricci 曲率 / 横断 Ricci 曲率 Less
  • Research Projects

    (2 results)
  • Research Products

    (17 results)
  •  Geometric analysis on spaces equipped with modifications of the Ricci curvaturePrincipal Investigator

    • Principal Investigator
      只野 誉
    • Project Period (FY)
      2022 – 2025
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Yamaguchi University
  •  Research on some generalizations of Ricci flows and Ricci solitonsPrincipal Investigator

    • Principal Investigator
      只野 誉
    • Project Period (FY)
      2018 – 2022
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Yamaguchi University
      Tokyo University of Science

All 2022 2021 2019 2018

All Presentation

  • [Presentation] New Compactness Criteria via m-Bakry-Emery Ricci Curvature of Exponential Decay2022

    • Author(s)
      只野 誉
    • Organizer
      日本数学会2022年度年会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] A Zoo of Myers-type Theorems2022

    • Author(s)
      只野 誉
    • Organizer
      第18回数学総合若手研究集会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Integral Radial m-Bakry-Emery Ricci Curvatures and Myers-Ambrose type Theorems2022

    • Author(s)
      只野 誉
    • Organizer
      日本数学会2022年度年会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Ambrose and Calabi Type Theorems via m-Bakry-Emery Ricci Curvature2022

    • Author(s)
      只野 誉
    • Organizer
      日本数学会2022年度年会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Radial m-Bakry-Emery Ricci Curvatures, Riccati Inequalities, and Myers-type Theorems2022

    • Author(s)
      只野 誉
    • Organizer
      日本数学会2022年度年会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Cheeger-Gromov-Taylor Type Compactness Theorems via Integral Radial m-Bakry-Emery Ricci Curvatures2022

    • Author(s)
      只野 誉
    • Organizer
      日本数学会2022年度年会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] New Myers Type Theorems via m-Bakry-Emery Ricci Curvature2022

    • Author(s)
      只野 誉
    • Organizer
      Geometry and Probability 2021
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] A Zoo of Myers-Type Theorems2021

    • Author(s)
      只野 誉
    • Organizer
      山口大学 理学部 数理科学科談話会
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Boju-Funar Type Theorems via m-Bakry-Emery and m-modified Ricci Curvatures2021

    • Author(s)
      只野 誉
    • Organizer
      日本数学会2021年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] m-Bakry-Emery Ricci Curvatures, Riccati Inequalities, and Bounded Diameters2021

    • Author(s)
      只野 誉
    • Organizer
      日本数学会2021年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Some Compactness Theorems for Transverse Ricci Solitons on Complete Sasaki Manifolds2019

    • Author(s)
      只野 誉
    • Organizer
      日本数学会 2019年度年会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] A New Compactness Theorem via m-Bakry-Emery Ricci Curvature with Positive m2019

    • Author(s)
      只野 誉
    • Organizer
      日本数学会 2019年度年会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Some Compactness Theorems for Transverse Ricci Solitons on Complete Sasaki Manifolds2019

    • Author(s)
      只野 誉
    • Organizer
      第 233 回 数理情報科学談話会
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Some Bonnet-Myers Type Theorems for Transverse Ricci Solitons on Complete Sasaki Manifolds2019

    • Author(s)
      只野 誉
    • Organizer
      第 54 回 函数論サマーセミナー
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Some Compactness Theorems for Transverse Ricci Solitons on Complete Sasaki Manifolds2019

    • Author(s)
      只野 誉
    • Organizer
      複素解析幾何セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Ricci ソリトンの幾何学2018

    • Author(s)
      只野 誉
    • Organizer
      福岡大学 微分幾何セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K13417
  • [Presentation] Some Cheeger-Gromov-Taylor Type Theorems for Finsler Manifolds2018

    • Author(s)
      只野 誉
    • Organizer
      日本数学会 2018 年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-18K13417

URL: 

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi