• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Omori Genki  大森 源城

ORCIDConnect your ORCID iD *help
Researcher Number 20843303
Other IDs
Affiliation (Current) 2025: 茨城工業高等専門学校, 国際創造工学科, 助教
Affiliation (based on the past Project Information) *help 2023: 芝浦工業大学, 工学部, 助教
2019 – 2022: 東京理科大学, 理工学部数学科, 助教
Review Section/Research Field
Principal Investigator
Basic Section 11020:Geometry-related / 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Keywords
Principal Investigator
群表示 / hyperelliptic involution / 最小生成系 / 対称的写像類群 / Dehn twist / 向き付け不可能曲面 / 周期的写像 / 写像類群 / Quasitoric組み紐 / 組み紐群 … More / トレリ群 / involution / crosscap pushing map / ハンドル体群 / crosscap slide / Crosscap slide Less
  • Research Projects

    (2 results)
  • Research Products

    (20 results)
  •  曲面の周期的写像と写像類群の群構造Principal Investigator

    • Principal Investigator
      大森 源城
    • Project Period (FY)
      2021 – 2025
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Shibaura Institute of Technology
      Tokyo University of Science
  •  The group structure of the mapping class group of a surface and its subgroupsPrincipal Investigator

    • Principal Investigator
      Omori Genki
    • Project Period (FY)
      2019 – 2021
    • Research Category
      Grant-in-Aid for Research Activity Start-up
    • Review Section
      0201:Algebra, geometry, analysis, applied mathematics,and related fields
    • Research Institution
      Tokyo University of Science

All 2024 2023 2022 2021 2020

All Journal Article Presentation

  • [Journal Article] The balanced superelliptic mapping class groups are generated by three elements2024

    • Author(s)
      Omori Genki
    • Journal Title

      Advances in Geometry

      Volume: 24 Issue: 1 Pages: 111-125

    • DOI

      10.1515/advgeom-2023-0026

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Journal Article] A positive factorization for the balanced superelliptic rotation2023

    • Author(s)
      Omori Genki
    • Journal Title

      Topology and its Applications

      Volume: 328 Pages: 108464-108464

    • DOI

      10.1016/j.topol.2023.108464

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Journal Article] A small generating set for the balanced superelliptic handlebody group2022

    • Author(s)
      Genki Omori
    • Journal Title

      Topology and its Applications

      Volume: 322 Pages: 108333-108333

    • DOI

      10.1016/j.topol.2022.108333

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Journal Article] An infinite presentation for the mapping class group of a non-orientable surface with boundary2022

    • Author(s)
      Ryoma Kobayashi, Genki Omori
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 59

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Journal Article] An infinite presentation for the mapping class group of a non-orientable surface with boundary2022

    • Author(s)
      Ryoma Kobayashi, Genki Omori
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 59

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-19K23409
  • [Presentation] Quasitoric組み紐群の最小生成系について2023

    • Author(s)
      大森源城
    • Organizer
      研究集会「結び目の数理IV」
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] A small generating set for the balanced superelliptic handlebogy group2023

    • Author(s)
      大森源城
    • Organizer
      日本数学会2023年度年会
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] Quasitoric組み紐群の最小生成系について2023

    • Author(s)
      大森源城
    • Organizer
      研究集会「拡大KOOKセミナー 2023」
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] Quasitoric組み紐群の最小生成系について2023

    • Author(s)
      大森源城
    • Organizer
      日本数学会2023年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] A finite presentation for the balanced superelliptic handlebody group2023

    • Author(s)
      大森源城
    • Organizer
      日本数学会2023年度年会
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] Quasitoric組み紐群の最小生成系について2023

    • Author(s)
      大森源城
    • Organizer
      農工大・早大理工セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] Finite presentations for the balanced superelliptic mapping class groups2022

    • Author(s)
      大森源城
    • Organizer
      研究集会「リーマン面に関連する位相幾何学」
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] Finite presentations for the balanced superelliptic mapping class groups2022

    • Author(s)
      大森源城
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] Finite presentations for the balanced superelliptic mapping class groups2022

    • Author(s)
      大森源城
    • Organizer
      研究集会「拡大KOOKセミナー2022」
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] A finite presentation for the balanced superelliptic handlebody group2022

    • Author(s)
      大森源城
    • Organizer
      研究集会「結び目の数理V」
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] The balanced superelliptic mapping class groups are generated by three elements2022

    • Author(s)
      大森源城
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Data Source
      KAKENHI-PROJECT-21K13794
  • [Presentation] 種数5以下の向き付け不可能曲面上の対合のDehn twist-crosscap slide表示について2021

    • Author(s)
      大森源城
    • Organizer
      研究集会「Hurwitz action online ~フルビッツ作用とその周辺~」
    • Data Source
      KAKENHI-PROJECT-19K23409
  • [Presentation] 種数5以下の向き付け不可能曲面上のinvolutionのDehn twist-crosscap slide表示について2020

    • Author(s)
      大森源城
    • Organizer
      研究集会「拡大KOOKセミナー2020」
    • Data Source
      KAKENHI-PROJECT-19K23409
  • [Presentation] Dehn twist-crosscap slide presentations for involutions on non-orientable surfaces of genera up to 52020

    • Author(s)
      大森源城
    • Organizer
      Friday Seminar on Knot Theory
    • Invited
    • Data Source
      KAKENHI-PROJECT-19K23409
  • [Presentation] 種数4と5の場合の向き付け不可能曲面上のinvolutionのDehn twist-crosscap slide表示について2020

    • Author(s)
      大森源城
    • Organizer
      日本数学会 2020年度年会
    • Data Source
      KAKENHI-PROJECT-19K23409

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi