• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kiyohara Shin  清原 慎

ORCIDConnect your ORCID iD *help
… Alternative Names

清原 慎  キヨハラ シン

Less
Researcher Number 20971881
Other IDs
Affiliation (Current) 2025: 東北大学, 金属材料研究所, 講師
Affiliation (based on the past Project Information) *help 2025: 東北大学, 金属材料研究所, 講師
2023: 東北大学, 金属材料研究所, 助教
Review Section/Research Field
Principal Investigator
Basic Section 26020:Inorganic materials and properties-related / Basic Section 36010:Inorganic compounds and inorganic materials chemistry-related
Except Principal Investigator
Basic Section 26010:Metallic material properties-related
Keywords
Principal Investigator
マテリアルズインフォマティクス / ニューラルネットワーク / 機械学習 / ベイズ最適化 / 第一原理計算
Except Principal Investigator
機械学習 / 計算材料データベース / 点欠陥
  • Research Projects

    (3 results)
  • Research Products

    (2 results)
  • Co-Researchers

    (2 People)
  •  ユニバーサルな点欠陥形成エネルギーの高精度予測と材料探索への応用

    • Principal Investigator
      熊谷 悠
    • Project Period (FY)
      2025 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 26010:Metallic material properties-related
    • Research Institution
      Tohoku University
  •  ディープラーニングとガウス過程を融合したベイズ最適化による材料探索手法の開発Principal Investigator

    • Principal Investigator
      清原 慎
    • Project Period (FY)
      2025 – 2026
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 26020:Inorganic materials and properties-related
    • Research Institution
      Tohoku University
  •  機械学習に基づいた電荷密度予測手法の構築Principal Investigator

    • Principal Investigator
      清原 慎
    • Project Period (FY)
      2023 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 36010:Inorganic compounds and inorganic materials chemistry-related
    • Research Institution
      Tohoku University

All 2024

All Journal Article Presentation

  • [Journal Article] Band Alignment of Oxides by Learnable Structural-Descriptor-Aided Neural Network and Transfer Learning2024

    • Author(s)
      Kiyohara Shin、Hinuma Yoyo、Oba Fumiyasu
    • Journal Title

      Journal of the American Chemical Society

      Volume: 146 Issue: 14 Pages: 9697-9708

    • DOI

      10.1021/jacs.3c13574

    • Peer Reviewed / Open Access
    • Data Source
      KAKENHI-PROJECT-23K13811, KAKENHI-PROJECT-20H00302
  • [Presentation] MgO中の転位すべりに関する第一原理計算2024

    • Author(s)
      清原慎、都留智仁、熊谷悠
    • Organizer
      2024年年会 公益社団法人日本セラミックス協会
    • Data Source
      KAKENHI-PROJECT-23K13811
  • 1.  熊谷 悠 (00722464)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  松崎 功佑 (40571500)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi