• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Packwood Daniel  Packwood Daniel

ORCIDConnect your ORCID iD *help
… Alternative Names

PACKWOOD Daniel  パックウッド ダニエル

Less
Researcher Number 40640884
Affiliation (Current) 2025: 京都大学, 高等研究院, 准教授
Affiliation (based on the past Project Information) *help 2022 – 2024: 京都大学, 高等研究院, 准教授
2017 – 2023: 京都大学, 高等研究院, 講師
2016: 京都大学, 物質-細胞統合システム拠点, 講師
2014 – 2015: 東北大学, 原子分子材料科学高等研究機構, 助教
Review Section/Research Field
Principal Investigator
Science and Engineering / Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related / Basic Section 32020:Functional solid state chemistry-related / Medium-sized Section 44:Biology at cellular to organismal levels, and related fields / Basic Section 29020:Thin film/surface and interfacial physical properties-related / Biological physics/Chemical physics/Soft matter physics
Except Principal Investigator
Medium-sized Section 52:General internal medicine and related fields / Medium-sized Section 43:Biology at molecular to cellular levels, and related fields / Broad Section K / Medium-sized Section 37:Biomolecular chemistry and related fields
Keywords
Principal Investigator
Machine learning / 機械学習 / 分子自己組織化 / ベイズ最適化 / First-principles / 表面 / 第一原理計算 / surface / 有機薄膜 / 密度汎関数理論 … More / Graph neural network / Data / Excitonic coupling / Exciton diffusion / Organic photovoltatics / 計算材料化学 / 材料設計 / 量子アニーリング / phthalocyanine / porphryin / quantum annealing / simulation / self-assembly / Quantum Monte Carlo / Molecule / Surface / Molecular / Genetic algorthm / First-princples / Adsorption / Monte Carlo / Self-assembly / Quantum annealing / 再生医療 / 幹細胞分化増殖 / 材料情報 / Data-driven / DFT / Screening / Cardiomyocite / Stem cell / small molecule / statistics / cardiomyocite / iPS / descriptors / regression / machine learning / data / cardiomyocyte / stem cell / ベイズ機械学習 / 二次元磁気性 / 二次元磁性 / 材料探索・バーチャルスクリーニング / 非対称金属錯体 / 第一原理構造予測 / 分子薄膜 / 磁気性 / 進化アルゴリズム / 構造予測 / 薄膜構造解明 / 実験・理論・情報の融合 / 構造解明 / 最適化 / 結晶性 / 電子線回析シミュレーション / 低速電子線解析 / 薄膜構造の解明 / 教師なし機械学習 / 低速電子線回折シミュレーション / 走査トンネル顕微鏡 / 低速電子線回折 / 複合材料 / ナノ材料 / 統計数学 / 情報基礎 / 化学物理 / machine leanring / Bayesian optimisation / first-principles / molecular self-assembly / マテリアルインフォマティクス / 有機エレクトロニクス / グラフェンナノリボン / 表面科学 / Random walk / Stochastic model / Lithium ion battery / Organic semiconductor / Organic crystal / Charge transport / Information reduction / Cheeger constant / Bayesian networks / Lithium ion batteries / Metal oxides / Organic semiconductors … More
Except Principal Investigator
ゲノムバーコード / 心臓弁膜症 / マクロファージ / 心内膜造血 / Machine learning / Chemical probe / RNA-protein interactions / Direct RNA sequencing / Nanopore / バイオインフォマティクス / ケミカルプローブ / RNA-たんぱく質相互作用 / リボソーム / ナノポアシークエンシング / RNA modifications / RNA protein interactions / Informatics / Chemical probes / Nanopore technology / RNA Structures / Transcriptomics / 連携機能 / ガスセンサ / 半導体 / 錯体化学 / 刺激応答性 / 適応機能 / ナノ空間化学 / 複合材料 / 界面化学 / 多孔性配位高分子 / 生理活性小分子 / 自己集合 Less
  • Research Projects

    (11 results)
  • Research Products

    (39 results)
  • Co-Researchers

    (16 People)
  •  心内膜造血の証明

    • Principal Investigator
      中野 敦
    • Project Period (FY)
      2024 – 2026
    • Research Category
      Grant-in-Aid for Challenging Research (Pioneering)
    • Review Section
      Medium-sized Section 52:General internal medicine and related fields
    • Research Institution
      Jikei University School of Medicine
  •  データ科学・計算機化学の融合による有機光電変換材料の創生プラットフォームPrincipal Investigator

    • Principal Investigator
      Packwood Daniel
    • Project Period (FY)
      2023 – 2025
    • Research Category
      Grant-in-Aid for JSPS Fellows
    • Review Section
      Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related
    • Research Institution
      Kyoto University
  •  Chemistry of Synergistic Interface Space for Trace Detection/Separation/Conversion of Toxic and Harmful Substances

    • Principal Investigator
      北川 進
    • Project Period (FY)
      2022 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (S)
    • Review Section
      Broad Section K
    • Research Institution
      Kyoto University
  •  An integrated approach for mapping RNA protein interactions in the ribosome

    • Principal Investigator
      NAMASIVAYAM Ganesh Pandian
    • Project Period (FY)
      2022 – 2023
    • Research Category
      Grant-in-Aid for Challenging Research (Exploratory)
    • Review Section
      Medium-sized Section 43:Biology at molecular to cellular levels, and related fields
    • Research Institution
      Kyoto University
  •  Quantum Annealing for Functional Molecular AssembliesPrincipal Investigator

    • Principal Investigator
      Packwood Daniel
    • Project Period (FY)
      2021 – 2023
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 32020:Functional solid state chemistry-related
    • Research Institution
      Kyoto University
  •  Stem cell differentiation platform utilizing Bayesian machine learningPrincipal Investigator

    • Principal Investigator
      Packwood Daniel
    • Project Period (FY)
      2020 – 2024
    • Research Category
      Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
    • Review Section
      Medium-sized Section 44:Biology at cellular to organismal levels, and related fields
    • Research Institution
      Kyoto University
  •  2D Magnetism Based Upon Asymmetric Coordination Complexes - Screening via First-Principles Structure PredictionPrincipal Investigator

    • Principal Investigator
      Packwood Daniel
    • Project Period (FY)
      2019 – 2020
    • Research Category
      Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
    • Review Section
      Science and Engineering
    • Research Institution
      Kyoto University
  •  Exploration of Self-Assembling Bioactive Small Molecules

    • Principal Investigator
      Uesugi Motonari
    • Project Period (FY)
      2019 – 2021
    • Research Category
      Grant-in-Aid for Scientific Research (A)
    • Review Section
      Medium-sized Section 37:Biomolecular chemistry and related fields
    • Research Institution
      Kyoto University
  •  Creation of an organic thin film deposition system by integration of information sciencePrincipal Investigator

    • Principal Investigator
      Packwood Daniel
    • Project Period (FY)
      2018 – 2019
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 29020:Thin film/surface and interfacial physical properties-related
    • Research Institution
      Kyoto University
  •  「ベイズ最適化を活用した」分子自己組織化による ナノ構造制御Principal Investigator

    • Principal Investigator
      Packwood Daniel
    • Project Period (FY)
      2016 – 2017
    • Research Category
      Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
    • Review Section
      Science and Engineering
    • Research Institution
      Kyoto University
  •  Charge transport inside of organic crystals and lithium-containing metal oxidesPrincipal Investigator

    • Principal Investigator
      Packwood Daniel
    • Project Period (FY)
      2014 – 2015
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Biological physics/Chemical physics/Soft matter physics
    • Research Institution
      Tohoku University

All 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 Other

All Journal Article Presentation Book

  • [Book] Cell-Inspired Materials and Engineering: Machine Learning and Monte Carlo Methods for Surface-Assisted Molecular Self-Assembly2021

    • Author(s)
      Daniel Packwood
    • Publisher
      Springer
    • Data Source
      KAKENHI-PROJECT-19H00922
  • [Book] Cell-Inspired Materials and Engineering2021

    • Author(s)
      D. O. Wang and D. M. Packwood (editors)
    • Total Pages
      257
    • Publisher
      Springer
    • Data Source
      KAKENHI-PROJECT-20KK0160
  • [Book] Bayesian Optimization for Materials Science2017

    • Author(s)
      Daniel Packwood
    • Total Pages
      50
    • Publisher
      Springer
    • ISBN
      9789811067815
    • Data Source
      KAKENHI-PUBLICLY-16H00879
  • [Journal Article] An Intelligent, User‐Inclusive Pipeline for Organic Semiconductor Design2023

    • Author(s)
      Packwood Daniel M, Kaneko Yu, Ikeda Daiji, Ohno Mitsuru
    • Journal Title

      Advanced Theory and Simulations

      Volume: 6 Issue: 8 Pages: 2300159-2300171

    • DOI

      10.1002/adts.202300159

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K05003
  • [Journal Article] Exciton diffusion in amorphous organic semiconductors: Reducing simulation overheads with machine learning2023

    • Author(s)
      Wechwithayakhlung Chayanit, Weal Geoffrey R, Kaneko Yu, Hume Paul A, Hodgkiss Justin M, Packwood Daniel M.
    • Journal Title

      The Journal of Chemical Physics

      Volume: 158 Issue: 20 Pages: 204106-204121

    • DOI

      10.1063/5.0144573

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K05003
  • [Journal Article] Bi-Functional On-Surface Molecular Assemblies Predicted From a Multifaceted Computational Approach2022

    • Author(s)
      Daniel M. Packwood
    • Journal Title

      Advanced Physics Research

      Volume: 1 Issue: 1 Pages: 2200019-2200019

    • DOI

      10.1002/apxr.202200019

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K05003
  • [Journal Article] Magnetic on-surface assemblies predicted from a pious computational method2022

    • Author(s)
      Daniel Packwood
    • Journal Title

      arXiv

      Volume: arXiv:2204.09823 Pages: 1-25

    • Open Access
    • Data Source
      KAKENHI-PROJECT-21K05003
  • [Journal Article] Disorder-robust bands from anisotropic orbitals in a coordination polymer semiconductor2020

    • Author(s)
      Daniel M. Packwood and Pichaya Pattanasattayavong
    • Journal Title

      Journal of Physics Condensed Matter

      Volume: 32 Issue: 27 Pages: 275701-275701

    • DOI

      10.1088/1361-648x/ab7d65

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-19H04574
  • [Journal Article] Exploring the configuration spaces of surface materials using time-dependent diffraction patterns and unsupervised learning2020

    • Author(s)
      Daniel M. Packwood
    • Journal Title

      Scientific Reports

      Volume: 10 Issue: 1 Pages: 5868-5879

    • DOI

      10.1038/s41598-020-62782-6

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K14126
  • [Journal Article] Discovery of Self‐Assembling Small Molecules as Vaccine Adjuvants2020

    • Author(s)
      Jin Shuyu、Vu Hue Thi、Hioki Kou、Noda Naotaka、Yoshida Hiroki、Shimane Toru、Ishizuka Shigenari、Takashima Ippei、Mizuhata Yoshiyuki、Beverly Pe Kathleen、Ogawa Tetsuya、Nishimura Naoya、Packwood Daniel、Tokitoh Norihiro、Kurata Hiroki、Yamasaki Sho、Ishii Ken J.、Uesugi Motonari
    • Journal Title

      Angewandte Chemie International Edition

      Volume: 60 Issue: 2 Pages: 961-969

    • DOI

      10.1002/anie.202011604

    • NAID

      120006958092

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20K20447, KAKENHI-PROJECT-20H00505, KAKENHI-PROJECT-18H01963, KAKENHI-PLANNED-17H06408, KAKENHI-PROJECT-19H05635, KAKENHI-PROJECT-19H00922, KAKENHI-PROJECT-19K23816
  • [Journal Article] Heavy Metal Effects on the Photovoltaic Properties of Metallocorroles in Dye-Sensitized Solar Cells2020

    • Author(s)
      Tomohiro Higashino, Yuma Kurumisawa, Abraham B. Alemayehu, Rune F. Einrem, Debashis Sahu, Daniel Packwood, Kosaku Kato, Akira Yamakata, Abhik Ghosh and Hiroshi Imahori
    • Journal Title

      ACS Applied Energy Materials

      Volume: 3 Issue: 12 Pages: 12460-12467

    • DOI

      10.1021/acsaem.0c02427

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-19H04708, KAKENHI-PUBLICLY-19H04574, KAKENHI-PROJECT-18H03898, KAKENHI-PLANNED-20H05832, KAKENHI-PLANNED-20H05838, KAKENHI-PLANNED-20H05841, KAKENHI-PROJECT-19H02820
  • [Journal Article] Kernelized machine learning for a molecular self-assembly model2019

    • Author(s)
      Daniel M. Packwood
    • Journal Title

      Bulletin of the Japan Society for Coordination Chemistry

      Volume: 74 Pages: 62-62

    • Data Source
      KAKENHI-PUBLICLY-19H04574
  • [Journal Article] Substrate-molecule decoupling induced by self-assembly - implications for graphene nanoribbon fabrication2018

    • Author(s)
      Xinqian Li and Daniel Packwood
    • Journal Title

      AIP Advances

      Volume: 8 Issue: 4 Pages: 045117-045123

    • DOI

      10.1063/1.5025101

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-16H00879
  • [Journal Article] Chemical and entropic control on the molecular self-assembly process2017

    • Author(s)
      Daniel Packwood, Patrick Han, Taro Hitosugi
    • Journal Title

      Nature Communications

      Volume: 8 Issue: 1 Pages: 144643-14451

    • DOI

      10.1038/ncomms14463

    • NAID

      120005971845

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-16H00879, KAKENHI-PROJECT-26246022
  • [Journal Article] Rapid prediction of molecule arrangements on metal surfaces via Bayesian optimization2017

    • Author(s)
      Daniel Packwood, Taro Hitosugi
    • Journal Title

      Applied Physics Express

      Volume: 10 Pages: 065502-065506

    • Peer Reviewed
    • Data Source
      KAKENHI-PUBLICLY-16H00879
  • [Journal Article] Charge transport in organic crystals: Critical role of correlated fluctuations unveiled by analysis of Feynman diagrams2015

    • Author(s)
      Packwood, D. M.; Oniwa, K.; Jin, T.; Asao, N.
    • Journal Title

      J. Chem. Phys.

      Volume: 142 Issue: 14 Pages: 144503-1

    • DOI

      10.1063/1.4916385

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-25286012, KAKENHI-PROJECT-26800220
  • [Presentation] Data science for materials and chemical biology2024

    • Author(s)
      Daniel Packwood
    • Organizer
      The 9th Symposium on Theoretical and Applied Mechanics
    • Invited
    • Data Source
      KAKENHI-PROJECT-20KK0160
  • [Presentation] In-silico prediction of functional on-surface supramolecular materials2023

    • Author(s)
      Daniel M. Packwood
    • Organizer
      AMN10 - 10th International Conference on Advanced Materials and Nanotechnology
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K05003
  • [Presentation] Machine learning for functional molecular materials and supramolecular assemblies2023

    • Author(s)
      Daniel Packwood
    • Organizer
      7th Forum of Materials Genome Engineering (ForMGE)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K05003
  • [Presentation] Designing bioactive materials with small data2023

    • Author(s)
      Daniel Packwood
    • Organizer
      The 1st MacDiarmid Institute-Kyoto University Workshop on Integrated Data-Material Sciences
    • Data Source
      KAKENHI-PROJECT-20KK0160
  • [Presentation] Machine learning for materials chemistry and chemical biology2023

    • Author(s)
      Daniel Packwood
    • Organizer
      The 10th ICIAM (Internal Congress of Industrial and Applied Mathematics)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K05003
  • [Presentation] Machine learning for materials chemistry and chemical biology2023

    • Author(s)
      Daniel Packwood
    • Organizer
      10th ICIAM (International Congress for Industrial and Applied Mathematics)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-20KK0160
  • [Presentation] Data-Driven Approaches for Surface Materials and Beyond2022

    • Author(s)
      Daniel Packwood
    • Organizer
      Perspectives on Artificial Intelligence and Machine Learning in Materials Science, IMI Joint Usage Research Project, Institute for Mathematics for Industry, Kyushu University
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K05003
  • [Presentation] Data-driven approaches for surface materials and beyond2022

    • Author(s)
      Daniel Packwood
    • Organizer
      IMI Workshop for the Join Research Projects in Kyushu University: Perspectives on Artificial Intelligence and Machine Learning in Materials Science
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-19H00922
  • [Presentation] データ科学・機械学習を活用する機能性分子の設計手法2022

    • Author(s)
      Daniel M. Packwood
    • Organizer
      データ科学・機械学習を活用する 機能性分子の設計研究事例(ダイキン工業主催 Webセミナー)
    • Invited
    • Data Source
      KAKENHI-PROJECT-20KK0160
  • [Presentation] Structure prediction and control for functional surface materials2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      Applied Math for Energy: Future Directions (workshop at I2CNER, Kyushu University)
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-19H04574
  • [Presentation] Informatics for self-assembled materials2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      First Max Planck-VISTEC Symposium on Materials Science
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K14126
  • [Presentation] 表面上の分子集合体のための機械学習2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      近畿化学協会コンピューター化学部会 第107回例会
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K14126
  • [Presentation] Machine learning for surface-assisted self-assembly2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      NANOMAT2019 (CNRS, France)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K14126
  • [Presentation] Structure prediction and control for functional surface materials2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      Applied Math for Energy: Future Directions (workshop at I2CNER, Kyushu University)
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K14126
  • [Presentation] 表面上の分子集合体のための機械学習2020

    • Author(s)
      Daniel M. Packwood
    • Organizer
      近畿化学協会コンピューター化学部会 第107回例会
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-19H04574
  • [Presentation] Low-energy electron diffraction from organic monolayers2019

    • Author(s)
      Daniel Packwood
    • Organizer
      SPIRITS International Symposium 2019 - Regulation of cell fate and disease treatment
    • Invited
    • Data Source
      KAKENHI-PROJECT-18K14126
  • [Presentation] Machine learning for nanomaterials assembly on surfaces2018

    • Author(s)
      Daniel Packwood
    • Organizer
      Interfacing Machine Learning and Experimental Methods for Surface Structures
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-18K14126
  • [Presentation] Machine learning for molecular self-assembly on surfaces2017

    • Author(s)
      Daniel Packwood
    • Organizer
      International Workshop on Machine Learning for Materials Science (Aalto University, Finland)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PUBLICLY-16H00879
  • [Presentation] 表面上の分子自己組織化のための機械学習とモンテカルロ法2017

    • Author(s)
      Daniel Packwood
    • Organizer
      ものづくり企業に役に立つ応用数学手法の研究会(主催:日本応用数理学会)
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-16H00879
  • [Presentation] 「ベイズ最適化を活用した」分子自己組織化によるナノ構造制御2016

    • Author(s)
      Daniel Packwood
    • Organizer
      新学術領域「ナノ構造情報」第5全体会議
    • Place of Presentation
      京都
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-16H00879
  • [Presentation] Bayesian optimization for nanostructure prediction2016

    • Author(s)
      Daniel Packwood
    • Organizer
      COMBO Users Meeting
    • Place of Presentation
      東京
    • Invited
    • Data Source
      KAKENHI-PUBLICLY-16H00879
  • [Presentation] Charge Transport Inside of Organic Crystals: The Crucial Role of Correlated Fluctuations

    • Author(s)
      Daniel Packwood
    • Organizer
      Mathematical Challenge to a New Phase of Materials Science
    • Place of Presentation
      Research Institute of Mathematical Sciences, Kyoto University(Kyoto)
    • Year and Date
      2014-08-04 – 2014-08-08
    • Data Source
      KAKENHI-PROJECT-26800220
  • [Presentation] Charge Transport Inside of Organic Crystals: The Crucial Role of Correlated Fluctuations

    • Author(s)
      Daniel Packwood
    • Organizer
      AIMR Tohoku University-NCTU Joint Workshop on Fusion of Mathematics, Nano-Materials, and Nano-Devices
    • Place of Presentation
      National Chiao Tung University, Hsinchu, Taiwan
    • Year and Date
      2014-09-21 – 2014-09-25
    • Data Source
      KAKENHI-PROJECT-26800220
  • 1.  Uesugi Motonari (10402926)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  NAMASIVAYAM Ganesh Pandian (20625446)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  安井 孝介 (10877640)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  ABDALKADER Rodi (20839964)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 5.  山崎 晶 (40312946)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 6.  倉田 博基 (50186491)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 7.  柴 祐司 (70613503)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 8.  北川 進 (20140303)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 9.  大竹 研一 (20834823)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 10.  杉本 邦久 (00512807)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 11.  中野 敦 (10504368)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 12.  劉 孟佳 (50826922)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 13.  WEAL GEOFFREY
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 14.  時任 宣博
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results
  • 15.  浅尾 直樹
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results
  • 16.  山方 啓
    # of Collaborated Projects: 0 results
    # of Collaborated Products: 1 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi