• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Yamamoto Megumi  山本 めぐみ

ORCIDConnect your ORCID iD *help
Researcher Number 50412333
Other IDs
Affiliation (Current) 2022: 広島国際大学, 保健医療学部, 講師
Affiliation (based on the past Project Information) *help 2014 – 2020: 広島国際大学, 保健医療学部, 助教
Review Section/Research Field
Principal Investigator
Medical Physics and Radiological Technology / Radiation science / Basic Section 52040:Radiological sciences-related
Keywords
Principal Investigator
DSA / アーチファクト / 医用画像処理 / 放射線科学 / 血管造影 / 深層学習 / 冠動脈造影 / 機械学習 / 循環器 / 画像処理工学 … More / 冠動脈 / 造影 / Deep Learning / モーションアーチファクト / ニューラルネットワーク / 人工知能 / アンギオ / 血管 / 情報工学 / 敵対的生成ネットワーク / Deep Learning Less
  • Research Projects

    (3 results)
  • Research Products

    (21 results)
  • Co-Researchers

    (1 People)
  •  敵対的生成ネットワークを用いた新しい原理にもとづくDSAの開発Principal Investigator

    • Principal Investigator
      山本 めぐみ
    • Project Period (FY)
      2020 – 2023
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 52040:Radiological sciences-related
    • Research Institution
      Hiroshima International University
  •  Development of 3D-DSA using by Deep LearningPrincipal Investigator

    • Principal Investigator
      山本 めぐみ
    • Project Period (FY)
      2017 – 2021
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Medical Physics and Radiological Technology
      Radiation science
    • Research Institution
      Hiroshima International University
  •  Development of super high resolution DSA for coronary arteryPrincipal Investigator

    • Principal Investigator
      Yamamoto Megumi
    • Project Period (FY)
      2014 – 2016
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Medical Physics and Radiological Technology
    • Research Institution
      Hiroshima International University

All 2019 2018 2017 2016 2015

All Journal Article Presentation Patent

  • [Journal Article] A new method for reducing large motion artifacts of DSA based on deep learning technique2019

    • Author(s)
      M.Yamamoto, Y.Okura, H.kawata, N.Yamamoto
    • Journal Title

      Journal of the International Foundation for Computer Assisted Radiology and Surgery

      Volume: volume14/spplement1

    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Journal Article] 対向データを利用した補間法によるSPECT再構成法の開発2017

    • Author(s)
      山口雄貴 大倉保彦 山本めぐみ
    • Journal Title

      第36回日本医用画像工学会大会

      Volume: ー Pages: 365-371

    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Journal Article] 機械学習を用いた冠動脈DSAに関する研究2017

    • Author(s)
      山本めぐみ 大倉保彦
    • Journal Title

      第36回日本医用画像工学会大会

      Volume: ー Pages: 249-252

    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Journal Article] A method for reducing motion artifacts of DSA using deep learning technique2017

    • Author(s)
      Megumi Yamamoto, Yasuhiko Okura
    • Journal Title

      医学物理

      Volume: 37, sup3 Pages: 184-184

    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Journal Article] To investigate the effect of machine learning for Coronary DSA2016

    • Author(s)
      Yamamoto.M、Okura.Y
    • Journal Title

      医学物理学会

      Volume: 36 Pages: 197-197

    • Acknowledgement Compliant
    • Data Source
      KAKENHI-PROJECT-26860408
  • [Journal Article] A New Digital Subtraction Angiography For Coronary Artery By Using Density Difference Dependent Mask Image2015

    • Author(s)
      M. Yamamoto, Y.Okura
    • Journal Title

      Int J CARS(2015) 10(Suppl 1)

      Volume: 10 Pages: 9-10

    • Data Source
      KAKENHI-PROJECT-26860408
  • [Patent] 生体画像処理装置、出力画像製造方法、学習結果製造方法、及びプログラム2016

    • Inventor(s)
      山本めぐみ、大倉保彦
    • Industrial Property Rights Holder
      学校法人常翔学園
    • Industrial Property Rights Type
      特許
    • Filing Date
      2016-12-07
    • Data Source
      KAKENHI-PROJECT-26860408
  • [Presentation] A new method for reducing large motion artifacts of DSA based on deep learning technique2019

    • Author(s)
      M.Yamamoto, Y.Okura, H.kawata, N.Yamamoto
    • Organizer
      International Journal of Computer Assisted Radiology and Surgery
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Presentation] A method for reducing large motion artifacts of DSA based on deep learning technique2019

    • Author(s)
      山本めぐみ,大倉保彦,川田秀道, 山本直樹
    • Organizer
      日本放射線技術学会第75回総会学術大会
    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Presentation] Development of a new method to reduce large motion artifacts for DSA used by Deep Learning2018

    • Author(s)
      Megumi Yamamoto
    • Organizer
      IUPESM2018-World Congress on Medical Physics & Biomedical Engineering
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Presentation] A method for reducing motion artifacts of DSA using deep learning technique2017

    • Author(s)
      Megumi Yamamoto, Yasuhiko Okura
    • Organizer
      114th Scientific Meeting of JSMP
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Presentation] Digital subtraction angiography for coronary artery using deep learning technique2017

    • Author(s)
      山本めぐみ
    • Organizer
      European Congress of Radiology
    • Place of Presentation
      ウィーンコンベンションセンター
    • Year and Date
      2017-03-01
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26860408
  • [Presentation] Development of a New Digital Subtraction Angiography Technique for Coronary Artery via Machine Learning2017

    • Author(s)
      Megumi Yamamoto, Yasuhiko Okura
    • Organizer
      第73回日本放射線技術学会総会学術大会
    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Presentation] 機械学習を用いた冠動脈DSAに関する研究2017

    • Author(s)
      山本めぐみ, 大倉保彦
    • Organizer
      第36回日本医用画像工学会
    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Presentation] Development of a New Digita Subtraction Angiography Technique for coronary Artery via Machine Learning2017

    • Author(s)
      山本めぐみ
    • Organizer
      日本放射線技術学会
    • Place of Presentation
      パシフィコ横浜
    • Year and Date
      2017-04-14
    • Data Source
      KAKENHI-PROJECT-26860408
  • [Presentation] DSAへの深層学習の応用2017

    • Author(s)
      山本めぐみ
    • Organizer
      第45回日本放射線技術学会秋季学術大会
    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Presentation] 対向データを利用した補間法によるSPECT再構成法の開発2017

    • Author(s)
      山口雄貴, 大倉保彦, 山本めぐみ
    • Organizer
      第36回日本医用画像工学会
    • Data Source
      KAKENHI-PROJECT-17K18291
  • [Presentation] 機械学習を用いた冠動脈DSA法に関する研究2016

    • Author(s)
      山本めぐみ
    • Organizer
      医用画像情報学会
    • Place of Presentation
      大阪市立大学
    • Year and Date
      2016-06-11
    • Data Source
      KAKENHI-PROJECT-26860408
  • [Presentation] To investigate the effective of machine learning for coronary DSA2016

    • Author(s)
      山本めぐみ
    • Organizer
      医学物理学会
    • Place of Presentation
      沖縄コンベンションセンター
    • Year and Date
      2016-09-09
    • Data Source
      KAKENHI-PROJECT-26860408
  • [Presentation] Development of digital subtraction angiography for coronary artery without motion artifacts enabling read-time processing2015

    • Author(s)
      山本めぐみ
    • Organizer
      IUPESM World Congress On Medical Physics & Biomedical Engineering 2015(世界医学物理生体医工学会)
    • Place of Presentation
      カナダ(トロント)
    • Year and Date
      2015-06-07
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26860408
  • [Presentation] A New Digital Subtraction Angiography For Coronary Artery By Using Density Difference Dependent Mask Image2015

    • Author(s)
      山本めぐみ
    • Organizer
      Computer Assisted Radiology and Surgery 2015(第29回国際コンピュータ支援放射線医学・外科学会議)
    • Place of Presentation
      スペイン(バルセロナ)
    • Year and Date
      2015-06-24
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-26860408
  • 1.  大倉 保彦 (80369769)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to connect your ORCID iD to this researcher?
* This action can be performed only by the researcher themselves.

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi