• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

ENOMOTO Naoya  榎本 直也

ORCIDConnect your ORCID iD *help
Researcher Number 50565710
Other IDs
Affiliation (Current) 2025: 電気通信大学, 大学院情報理工学研究科, 准教授
Affiliation (based on the past Project Information) *help 2016 – 2023: 電気通信大学, 大学院情報理工学研究科, 准教授
2013 – 2015: 電気通信大学, 情報理工学(系)研究科, 准教授
2012: 京都大学, 理学(系)研究科(研究院), 助教
2010 – 2011: 京都大学, 理学研究科, 助教
Review Section/Research Field
Principal Investigator
Algebra / Basic Section 11010:Algebra-related
Except Principal Investigator
Algebra
Keywords
Principal Investigator
写像類群 / Johnson準同型 / 表現論 / 超平面配置 / quasi-invariant / ヘッケ環 / 量子群 / 可積分系 / 鏡映群 / LLTA型理論 … More / アフィンヘッケ環 / 曲面の写像類群 / LLTA理論 / 大域基底 / 結晶基底 … More
Except Principal Investigator
表現論 / 組み合わせ論 / 代数幾何学 / 代数学 / ルート系 / シューベルト多様体 / コホモロジー環 / 幾何学的表現論 / ヘッセンベルグ多様体 / Solomon-寺尾代数と多項式 / ゴレンシュタイン性 / Weyl群とWeyl代数 / 完全交差環 / 多重ワイル配置 / Weyl群 / Hodge分解 / 多重自由配置 / 複素鏡映配置 / 強レフシェッツ性 / 有理Cherednik代数と準不変式 / Dirac-Motzkin予想 / Sylvester-Gallaiの定理 / 特異点 / 二重点 / 超可解配置 / 原始微分 / 准不変式環 / 有理Cherednik代数 / Solomon-寺尾代数 / 準不変式環 / 多重配置 / Hessenberg多様体 / 自由配置 / 対数的ベクトル場 / 超平面配置 Less
  • Research Projects

    (4 results)
  • Research Products

    (31 results)
  • Co-Researchers

    (4 People)
  •  トポロジー・可積分系への表現論的アプローチPrincipal Investigator

    • Principal Investigator
      榎本 直也
    • Project Period (FY)
      2018 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      The University of Electro-Communications
  •  Research on the coinvariant ring theory for hyperplane arrangements and the new developments of its representation and geometry

    • Principal Investigator
      ABE TAKURO
    • Project Period (FY)
      2016 – 2020
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Research Field
      Algebra
    • Research Institution
      Kyushu University
  •  A representation theoretic approach to the mapping class group of surfacesPrincipal Investigator

    • Principal Investigator
      Enomoto Naoya
    • Project Period (FY)
      2014 – 2017
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      The University of Electro-Communications
  •  Representation theory of affine Hecke algebras and quanum groups via geometry, category and combinatoricsPrincipal Investigator

    • Principal Investigator
      ENOMOTO Naoya
    • Project Period (FY)
      2010 – 2013
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      The University of Electro-Communications
      Kyoto University

All 2020 2014 2013 2012 2011 2010

All Journal Article Presentation

  • [Journal Article] A comparison of classes in the Johnson cokernels of the mapping class groups of surfaces2020

    • Author(s)
      Naoya Enomoto, Yusuke Kuno, Takao Sahoh
    • Journal Title

      Topology and its Applications

      Volume: 271 Pages: 107052-107052

    • DOI

      10.1016/j.topol.2019.107052

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-18K03204, KAKENHI-PROJECT-18K03308, KAKENHI-PROJECT-18KK0071
  • [Journal Article] Sp-irreducible components in the Johnson Cokernels of the mapping class group of surfaces I2014

    • Author(s)
      Hikoe Enomoto and Naoya Enomoto
    • Journal Title

      Journal of Lie Theory

      Volume: 24-3 Pages: 687-704

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Journal Article] New series in the Johnson cokernels of the mapping class groups of surfaces2014

    • Author(s)
      Naoya Enomoto and Takao Satoh
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 2 Issue: 2 Pages: 627-669

    • DOI

      10.2140/agt.2014.14.627

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22740011, KAKENHI-PROJECT-26870368
  • [Journal Article] Spirreducible components in the Johnson Coker-nels of the mapping class group of surfaces I2014

    • Author(s)
      Hikoe Enomoto and Naoya Enomoto
    • Journal Title

      J. Lie Theory

      Volume: vol.24, no.3 Pages: 687-704

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Journal Article] Sp-irreducible components in the Johnson Cokernels of the mapping class group of surfaces I2014

    • Author(s)
      Hikoe Enomoto and Naoya Enomoto
    • Journal Title

      J. Lie Theory

      Volume: 24-3 Pages: 687-704

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-26870368
  • [Journal Article] Corrigendum to “A Quiver Construction of Symmetric Crystals”2012

    • Author(s)
      Naoya Enomoto
    • Journal Title

      International Mathematics Research Notices

      Volume: 5 Pages: 1198-1200

    • Data Source
      KAKENHI-PROJECT-22740011
  • [Journal Article] Corrigendum to "A Quiver Construction of Symmetric Crystals"2012

    • Author(s)
      Naoya Enomoto
    • Journal Title

      Int Math Res Notices

      Volume: Vol.2012 Issue: 5 Pages: 1198-1200

    • DOI

      10.1093/imrn/rnr012

    • Data Source
      KAKENHI-PROJECT-22740011
  • [Journal Article] 曲面の写像類群に付随するJohnson余核のSp-加群構造について2011

    • Author(s)
      榎本 直也
    • Journal Title

      リーマン面に関連する位相幾何学2011予稿集

      Pages: 22-33

    • Data Source
      KAKENHI-PROJECT-22740011
  • [Journal Article] On the derivation algebra of the free Lie algebra and trace maps2011

    • Author(s)
      Naoya Enomoto and Takao Satoh
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 11 Issue: 5 Pages: 2861-2901

    • DOI

      10.2140/agt.2011.11.2861

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-22740011, KAKENHI-PROJECT-23540085
  • [Journal Article] 曲面の写像類群に付随するJohnson余核のSp-加群構造について2011

    • Author(s)
      榎本 直也
    • Journal Title

      第14回代数群と量子群の表現論研究集会報告集

      Pages: 120-131

    • Data Source
      KAKENHI-PROJECT-22740011
  • [Journal Article] 曲面の写像類群に付随するJohnson余核のSp-加群構造について2011

    • Author(s)
      榎本 直也
    • Journal Title

      数理解析研究所講究録

      Volume: 1770巻 Pages: 162-173

    • Data Source
      KAKENHI-PROJECT-22740011
  • [Journal Article] A quiver construction of symmetric crystals and LLTA type conjectures for the affine Hecke algebras2010

    • Author(s)
      榎本直也
    • Journal Title

      第12回代数群と量子群の表現論研究集会報告集

      Volume: 1 Pages: 156-176

    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に付随するJohnson準同型への表現論的アプローチ2013

    • Author(s)
      榎本直也
    • Organizer
      代数セミナー
    • Place of Presentation
      信州大学
    • Year and Date
      2013-06-14
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] A representation theoretic approach to the Johnson cokernels II2013

    • Author(s)
      榎本直也
    • Organizer
      Workshop : Johnson homomorphisms
    • Place of Presentation
      東京大学数理科学研究科
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] A representation theoretic approach to the Johnson cokernels for the mapping class group of surfaces2013

    • Author(s)
      Naoya Enomoto
    • Organizer
      Hyperplane Arrangements and Characteristic classes
    • Place of Presentation
      Research Institute for Mathematical Sciences Kyoto University
    • Invited
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] A representation theoretic approach to the Johnson cokernels II2013

    • Author(s)
      Naoya Enomoto
    • Organizer
      Workshop: Johnson homomorphisms
    • Place of Presentation
      Univercity of Tokyo
    • Invited
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に対するJohnson 余核のSp-加群構造について2012

    • Author(s)
      榎本直也
    • Organizer
      代数幾何とその周辺
    • Place of Presentation
      北海道大学
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] Lascoux-Leclerc-Thibon-Ariki type theory for affine Hecke algebras I・II2012

    • Author(s)
      榎本直也
    • Organizer
      Geometric/categorical aspects of representation theory
    • Place of Presentation
      Hokkaido University
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] Lascoux-Leclerc-Thibon-Ariki type theory for affine Hecke algebras I, II2012

    • Author(s)
      榎本直也
    • Organizer
      eometric/categorical aspects of representation theo
    • Place of Presentation
      Hokkaido University
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に付随するJohnson余核のSp-加群構造について2012

    • Author(s)
      榎本直也
    • Organizer
      代数幾何とその周辺
    • Place of Presentation
      北海道大学理学部
    • Invited
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に対するJohnson 余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      大阪表現論セミナー
    • Place of Presentation
      大阪市立大学梅田サテライト
    • Year and Date
      2011-02-17
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に対するJohnson余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      大阪表現論セミナー
    • Place of Presentation
      大阪市立大学梅田サテライト(招待講演)
    • Year and Date
      2011-02-17
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] アフィンヘッケ環のLascoux-Leclerc-Thibon-Ariki 理論について2011

    • Author(s)
      榎本直也
    • Organizer
      数学談話会
    • Place of Presentation
      京都大学理学研究科
    • Year and Date
      2011-05-11
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に対するJohnson 余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      微分トポロジーセミナー
    • Place of Presentation
      京都大学理学研究科
    • Year and Date
      2011-10-25
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に対するJohnson 余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      表現論セミナー
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2011-05-27
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に対するJohnson 余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      表現論と調和解析における諸問題
    • Place of Presentation
      京都大学数理解析研究所
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に付随するJohnson余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      第14回代数群と量子群の表現論研究集会
    • Place of Presentation
      国民宿舎小豆島
    • Year and Date
      2011-06-04
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に対するJohnson 余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      第11回代数群と量子群の表現論研究集会
    • Place of Presentation
      小豆島国民休暇村
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に対するJohnson 余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      リーマン面に関連する位相幾何学2011
    • Place of Presentation
      東京大学数理科学研究科
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に付随するJohnson余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      RIMS研究集会表現論と調和解析における諸問題
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2011-07-01
    • Data Source
      KAKENHI-PROJECT-22740011
  • [Presentation] 曲面の写像類群に付随するJohnson余核のSp-加群構造について2011

    • Author(s)
      榎本直也
    • Organizer
      研究集会「リーマン面に関連する位相幾何学2011」
    • Place of Presentation
      東京大学大学院数理科学研究科
    • Year and Date
      2011-09-03
    • Data Source
      KAKENHI-PROJECT-22740011
  • 1.  ABE TAKURO (50435971)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  沼田 泰英 (00455685)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  吉永 正彦 (90467647)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  村井 聡 (90570804)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi