• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Pang Yanbo  Pang Yanbo

ORCIDConnect your ORCID iD *help
Researcher Number 60870178
Other IDs
Affiliation (Current) 2025: 東京大学, 空間情報科学研究センター, 特任講師
Affiliation (based on the past Project Information) *help 2024: 東京大学, 空間情報科学研究センター, 特任講師
2021 – 2024: 東京大学, 空間情報科学研究センター, 特任助教
Review Section/Research Field
Principal Investigator
Basic Section 22050:Civil engineering plan and transportation engineering-related
Except Principal Investigator
Basic Section 22050:Civil engineering plan and transportation engineering-related / Medium-sized Section 23:Architecture, building engineering, and related fields / Basic Section 25010:Social systems engineering-related / Medium-sized Section 4:Geography, cultural anthropology, folklore, and related fields
Keywords
Principal Investigator
データ基盤 / 人の流れ / 大規模言語モデル / 対話型機械学習 / 強化学習 / 深層学習 / 擬似人流 / 生成系AI / 人間参加型機械学習 / エージェントシミュレーション … More
Except Principal Investigator
… More オープンデータ / 交通シミュレーション / エージェントモデル / グラフニューラルネットワーク / 人流データ / 生成AI技術 / 三次元建物データ / 三次元都市空間 / 経済レジリエンス / データコモンズ / グローバル / 人流 / 建物 / 自動抽出 / デジタルツイン / 擬似人流 Less
  • Research Projects

    (6 results)
  • Research Products

    (14 results)
  • Co-Researchers

    (8 People)
  •  行動変容に対してレジリエントな地域経済ネットワークの構築に向けたデータ基盤の開発

    • Principal Investigator
      矢部 貴大
    • Project Period (FY)
      2024 – 2026
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 25010:Social systems engineering-related
    • Research Institution
      The University of Tokyo
  •  大規模移動データに基づく生成系AIモデルMobilityGPTの開発と適用Principal Investigator

    • Principal Investigator
      Pang Yanbo
    • Project Period (FY)
      2024 – 2025
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 22050:Civil engineering plan and transportation engineering-related
    • Research Institution
      The University of Tokyo
  •  生成AI技術を用いた都市規模の三次元建物データの効率的な作成・更新技術の体系化

    • Principal Investigator
      関本 義秀
    • Project Period (FY)
      2024 – 2025
    • Research Category
      Grant-in-Aid for Challenging Research (Exploratory)
    • Review Section
      Medium-sized Section 23:Architecture, building engineering, and related fields
    • Research Institution
      The University of Tokyo
  •  疑似人流開発プラットフォームの構築

    • Principal Investigator
      樫山 武浩
    • Project Period (FY)
      2023 – 2025
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 22050:Civil engineering plan and transportation engineering-related
    • Research Institution
      Osaka University of Economics
  •  Fundamental Research for the Creation of a Global Human Flow Data Commons

    • Principal Investigator
      SEKIMOTO YOSHIHIDE
    • Project Period (FY)
      2022 – 2023
    • Research Category
      Grant-in-Aid for Challenging Research (Exploratory)
    • Review Section
      Medium-sized Section 4:Geography, cultural anthropology, folklore, and related fields
    • Research Institution
      The University of Tokyo
  •  Development of Human-in-the-Loop Human Mobility SimulationPrincipal Investigator

    • Principal Investigator
      Pang Yanbo
    • Project Period (FY)
      2021 – 2023
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 22050:Civil engineering plan and transportation engineering-related
    • Research Institution
      The University of Tokyo

All 2024 2023 2022 2021

All Journal Article Presentation

  • [Journal Article] Nationwide Synthetic Human Mobility Dataset Construction from Limited Travel Surveys and Open Data2024

    • Author(s)
      Takehiro Kashiyama, Yanbo Pang, Yuya Shibuya, Takahiro Yabe, Yoshihide Sekimoto
    • Journal Title

      Computer-Aided Civil and Infrastructure Engineering

      Volume: -

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K18498
  • [Journal Article] Spatial Attention Based Grid Representation Learning For Predicting Origin?Destination Flow2022

    • Author(s)
      Cai Mingfei、Pang Yanbo、Sekimoto Yoshihide
    • Journal Title

      2022 IEEE International Conference on Big Data (Big Data)

      Volume: - Pages: 485-494

    • DOI

      10.1109/bigdata55660.2022.10021023

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Journal Article] Deep Learning for Destination Choice Modeling: A Fundamental Approach for National Level People Flow Reconstruction2022

    • Author(s)
      Pang Yanbo、Sekimoto Yoshihide
    • Journal Title

      2022 IEEE International Conference on Big Data (Big Data)

      Volume: - Pages: 1900-1905

    • DOI

      10.1109/bigdata55660.2022.10020165

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Journal Article] Uncertainty of Traffic Congestion Estimation Using Nationwide Pseudo Trip Data and Agent-Based Simulation2022

    • Author(s)
      Tewari Aayush、Pang Yanbo、Sekimoto Yoshihide
    • Journal Title

      2022 IEEE International Conference on Big Data (Big Data)

      Volume: - Pages: 3854-3863

    • DOI

      10.1109/bigdata55660.2022.10020749

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Journal Article] Simulating Human Mobility with Agent-based Modeling and Particle Filter Following Mobile Spatial Statistics2021

    • Author(s)
      Cai Mingfei、Pang Yanbo、Kashiyama Takehiro、Sekimoto Yoshihide
    • Journal Title

      Proceedings of the 29th International Conference on Advances in Geographic Information Systems

      Volume: - Pages: 411-414

    • DOI

      10.1145/3474717.3484203

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Presentation] Deep Learning Approach to Logistics Trips Generation: Enhancing Pseudo People Flow with Agent-based Modeling2023

    • Author(s)
      Zhang, K., Pang, Y., and Sekimoto, Y
    • Organizer
      IEEE ITS Annual Conference
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K18498
  • [Presentation] Synthetic Network Traffic Data Generation using Deep Generative Models2023

    • Author(s)
      Yanbo Pang, Pierre Ferry, Kunyi Zhang
    • Organizer
      NetMob 2023 Book of Abstracts
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Presentation] Synthetic Network Traffic Data Generation using Deep Generative Models2023

    • Author(s)
      Yanbo Pang, Pierre Ferry, Kunyi Zhang
    • Organizer
      Netmob 2023
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-22K18498
  • [Presentation] Towards Pseudo People Flow: Developing a Deep Generative Model based on PT Data to Reproduce Large-Scale Daily People Activity Profiles2023

    • Author(s)
      Yurong ZHANG, Kunyi ZHANG, Yanbo PANG, Yoshihide SEKIMOTO
    • Organizer
      第32回地理情報システム学会学術研究発表大会講演論文集
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Presentation] Deep Learning Approach to Logistics Trips Generation: Enhancing Pseudo People Flow with Agent-based Modeling2023

    • Author(s)
      Zhang, K., Pang, Y., and Sekimoto, Y
    • Organizer
      IEEE ITSC-2023
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Presentation] 全国擬似人流データの提供と評価2022

    • Author(s)
      Yanbo Pang,樫山武浩,関本義秀,
    • Organizer
      第31回地理情報システム学会研究発表大会
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Presentation] シナリオに基づく擬似人流生成のためのシミュレーション基盤の構築2022

    • Author(s)
      澁谷 遊野,Yanbo Pang,関本 義秀
    • Organizer
      第31回地理情報システム学会研究発表大会
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Presentation] 擬似人流データにおける時刻表を考慮した自治体全域の交通手段の推計 ―静岡県裾野市を対象に―2022

    • Author(s)
      笠原有貴,Yanbo Pang,樫山武浩,関本義秀,瀬崎薫
    • Organizer
      第31回地理情報システム学会研究発表大会
    • Data Source
      KAKENHI-PROJECT-21K14260
  • [Presentation] Development of a Reinforcement Learning based Agent Model and People Flow Data to Mega Metropolitan Area2021

    • Author(s)
      Pang Yanbo、Kashiyama Takehiro、Sekimoto Yoshihide
    • Organizer
      IEEE International Conference on Big Data (Big Data)
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K14260
  • 1.  SEKIMOTO YOSHIHIDE (60356087)
    # of Collaborated Projects: 3 results
    # of Collaborated Products: 2 results
  • 2.  矢部 貴大 (30940431)
    # of Collaborated Projects: 3 results
    # of Collaborated Products: 1 results
  • 3.  小川 芳樹 (70794296)
    # of Collaborated Projects: 3 results
    # of Collaborated Products: 0 results
  • 4.  樫山 武浩 (10611155)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 1 results
  • 5.  瀬戸 寿一 (80454502)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 0 results
  • 6.  澁谷 遊野 (20847917)
    # of Collaborated Projects: 2 results
    # of Collaborated Products: 1 results
  • 7.  井上 寛康 (60418499)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 8.  坪井 和史 (60992302)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi