• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kasuya Naohiko  粕谷 直彦

ORCIDConnect your ORCID iD *help
Researcher Number 70757765
Other IDs
Affiliation (Current) 2025: 北海道大学, 理学研究院, 准教授
Affiliation (based on the past Project Information) *help 2021 – 2025: 北海道大学, 理学研究院, 准教授
2017 – 2020: 京都産業大学, 理学部, 准教授
Review Section/Research Field
Principal Investigator
Basic Section 11020:Geometry-related / Geometry
Except Principal Investigator
Basic Section 11020:Geometry-related / Broad Section B
Keywords
Principal Investigator
接触構造 / 強擬凹境界 / 複素曲面 / CR構造 / 射影的埋め込み / 強擬凹複素曲面 / ハンドル接着 / ケーラーでない複素曲面 / 4次元トポロジー / 対数変換 … More / 楕円曲線 / 開複素曲面 / 開複素多様体 / 4次元多様体 / 複素構造 / トポロジー … More
Except Principal Investigator
Poisson 構造 / 実解析的1次元微分同相 / Anosov 葉層 / Lagrangian fibration / Lefschetz fibration / カスプ特異点 / 強擬凸性 / Anosov 流 / シンプレクティック構造 / 接触構造 / 葉層構造 / 多重次元Reebグラフ / Reeb complement / Gromollフィルトレーション / ホモトピー球面 / スペシャル・ジェネリック写像 / Reebグラフ / Reeb空間 / 次世代カタストロフ理論 / 幾何構造 / 多様体 / 幾何的トポロジー / 写像の特異点論 Less
  • Research Projects

    (5 results)
  • Research Products

    (24 results)
  • Co-Researchers

    (10 People)
  •  Projective embedding theorem for strongly pseudoconcave surfacesPrincipal Investigator

    • Principal Investigator
      粕谷 直彦
    • Project Period (FY)
      2025 – 2029
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Hokkaido University
  •  Mathematical innovations woven by singularity theory and geometric topology

    • Principal Investigator
      佐伯 修
    • Project Period (FY)
      2023 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (S)
    • Review Section
      Broad Section B
    • Research Institution
      Kyushu University
  •  強擬凹複素曲面とその境界に現れる接触構造Principal Investigator

    • Principal Investigator
      粕谷 直彦
    • Project Period (FY)
      2021 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Hokkaido University
  •  力学的微分トポロジーによる葉層・接触・シンプレクティック構造の研究

    • Principal Investigator
      三松 佳彦
    • Project Period (FY)
      2021 – 2025
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Chuo University
  •  Geometry of non-Kaehler open complex manifolds and 4-dimensional topologyPrincipal Investigator

    • Principal Investigator
      Kasuya Naohiko
    • Project Period (FY)
      2017 – 2022
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Geometry
    • Research Institution
      Hokkaido University
      Kyoto Sangyo University

All 2024 2023 2022 2021 2020 2018 2017

All Journal Article Presentation

  • [Journal Article] On the strongly pseudoconcave boundary of a compact complex surface2024

    • Author(s)
      Naohiko Kasuya and Daniele Zuddas
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 152-2 Pages: 709-723

    • DOI

      10.1090/proc/16603

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K13797, KAKENHI-PROJECT-23H05437, KAKENHI-PROJECT-23K20798
  • [Journal Article] A concave holomorphic filling of an overtwisted contact $3$-sphere2023

    • Author(s)
      Naohiko Kasuya and Daniele Zuddas
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 23-5 Issue: 5 Pages: 2141-2156

    • DOI

      10.2140/agt.2023.23.2141

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K13797, KAKENHI-PROJECT-23H05437, KAKENHI-PROJECT-23K20798
  • [Journal Article] On the deformation of the exceptional unimodal singularities2021

    • Author(s)
      Naohiko Kasuya, Atsuhide Mori
    • Journal Title

      Journal of Singularities

      Volume: 23 Pages: 1-14

    • DOI

      10.5427/jsing.2021.23a

    • Peer Reviewed / Open Access / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K14193, KAKENHI-PROJECT-23K20798
  • [Journal Article] CR regular embeddings of $S^{4n-1}$ in $\mathbb{C}^{2n+1}$2020

    • Author(s)
      Naohiko Kasuya
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 148 Issue: 7 Pages: 3021-3024

    • DOI

      10.1090/proc/14962

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17K14193
  • [Journal Article] Non-Kahler complex structures on $R^4$, II2018

    • Author(s)
      Antonio J. Di Scala, Naohiko Kasuya, Daniele Zuddas
    • Journal Title

      Journal of Symplectic Geometry

      Volume: 16-3

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K14193
  • [Journal Article] Non-Kähler complex structures on $R^4$, II2018

    • Author(s)
      Antonio Di Scala, Naohiko Kasuya, Daniele Zuddas
    • Journal Title

      Journal of Symplectic Geometry

      Volume: 16(3) Issue: 3 Pages: 631-644

    • DOI

      10.4310/jsg.2018.v16.n3.a2

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K14193
  • [Presentation] Lefschetz fibrations on the Milnor fibers of cusp and simple elliptic singularities2023

    • Author(s)
      Naohiko Kasuya
    • Organizer
      Workshop "Topology of Singularities and Related Topics" (JSPS-VAST Bilateral Joint Research Project, JV2023 Quy Nhon)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23K20798
  • [Presentation] Lefschetz fibrations on the Milnor fibers of cusp and simple elliptic singularities2023

    • Author(s)
      Naohiko Kasuya
    • Organizer
      Workshop "Topology of Singularities and Related Topics" (JSPS-VAST Bilateral Joint Research Project, JV2023 Quy Nhon)
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-23H05437
  • [Presentation] Lefschetz fibrations on the Milnor fibers of cusp and simple elliptic singularities2023

    • Author(s)
      Naohiko Kasuya
    • Organizer
      Workshop "Topology of Singularities and Related Topics"
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-21K13797
  • [Presentation] カスプ特異点および単純楕円特異点のMilnor fiber上のLefschetz fibration2022

    • Author(s)
      粕谷 直彦
    • Organizer
      4次元トポロジー
    • Data Source
      KAKENHI-PROJECT-23K20798
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2022

    • Author(s)
      粕谷 直彦
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Invited
    • Data Source
      KAKENHI-PROJECT-23K20798
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2022

    • Author(s)
      粕谷直彦
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K13797
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2022

    • Author(s)
      粕谷直彦
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K14193
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      日本数学会2021年度秋季分科会
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K13797
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷 直彦
    • Organizer
      日本数学会2021年度秋季総合分科会(トポロジー分科会特別講演)
    • Invited
    • Data Source
      KAKENHI-PROJECT-23K20798
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      東大複素解析幾何セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K14193
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      日本数学会2021年度年会
    • Data Source
      KAKENHI-PROJECT-17K14193
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷 直彦
    • Organizer
      多変数関数論冬セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-23K20798
  • [Presentation] 強擬凹曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      多変数関数論冬セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K13797
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      東大複素解析幾何セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-21K13797
  • [Presentation] 強擬凹複素曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      日本数学会2021年度秋季分科会
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K14193
  • [Presentation] 強擬凹曲面の境界に現れる接触構造2021

    • Author(s)
      粕谷直彦
    • Organizer
      多変数関数論冬セミナー
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K14193
  • [Presentation] Knots and links of complex tangents2018

    • Author(s)
      粕谷直彦
    • Organizer
      Intelligence of Low-dimensional Topology
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K14193
  • [Presentation] Non-Kahler complex structures on $R^4$2017

    • Author(s)
      Naohiko Kasuya
    • Organizer
      Topology of pseudoconvex domains and analysis of reproducing kernels
    • Invited
    • Data Source
      KAKENHI-PROJECT-17K14193
  • 1.  佐伯 修 (30201510)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  大本 亨 (20264400)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  鎌田 聖一 (60254380)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  古宇田 悠哉 (20525167)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 5.  片長 敦子 (20373128)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 6.  三松 佳彦 (70190725)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 7.  直江 央寛 (10823255)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 8.  高倉 樹 (30268974)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 9.  太田 啓史 (50223839)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 10.  三好 重明 (60166212)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi