• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Nonami Ryota  野波 諒太

ORCIDConnect your ORCID iD *help
Researcher Number 70849562
Other IDs
Affiliation (Current) 2025: 呉工業高等専門学校, 機械工学分野, 准教授
Affiliation (based on the past Project Information) *help 2025: 呉工業高等専門学校, 機械工学分野, 准教授
2023 – 2024: 呉工業高等専門学校, 機械工学分野, 助教
Review Section/Research Field
Principal Investigator
Basic Section 24020:Marine engineering-related
Except Principal Investigator
Basic Section 22010:Civil engineering material, execution and construction management-related / Basic Section 24020:Marine engineering-related
Keywords
Principal Investigator
船舶設計 / DDQN / 船舶 / 構造最適化 / AI / 深層強化学習
Except Principal Investigator
力学特性 / 凝結時間 / スランプフロー / 高流動コンクリート … More / アルカリ活性材料 / 船舶構造 / 最適化 / 接続部材反力推定 / 領域有限要素 / 船体構造 / 構造最適設計 / 船体構造解析 / 強化学習最適化 / 接続部材反推定 / 領域有限要素法 Less
  • Research Projects

    (3 results)
  • Research Products

    (2 results)
  • Co-Researchers

    (3 People)
  •  アルカリ活性材料ベースの高流動コンクリートの施工性と長期耐久性の評価

    • Principal Investigator
      三村 陽一
    • Project Period (FY)
      2025 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 22010:Civil engineering material, execution and construction management-related
    • Research Institution
      National Institute of Technology (KOSEN), Kure College
  •  Development of a Structural Optimization Method for the Midship Section of a Ship with Deep Reinforcement Learning AI incorporating Principal Dimensions as Design VariablesPrincipal Investigator

    • Principal Investigator
      野波 諒太
    • Project Period (FY)
      2023 – 2024
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 24020:Marine engineering-related
    • Research Institution
      National Institute of Technology (KOSEN), Kure College
  •  領域有限要素法と接続部材反力推定を用いた船舶全体構造の最適化に関する研究

    • Principal Investigator
      北村 充
    • Project Period (FY)
      2021 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 24020:Marine engineering-related
    • Research Institution
      Hiroshima University

All 2023

All Presentation

  • [Presentation] 深層強化学習AIによる板厚最適化手法の提案2023

    • Author(s)
      野波諒太
    • Organizer
      M&M・CMD 若手シンポジウム 2023
    • Data Source
      KAKENHI-PROJECT-23K21008
  • [Presentation] 深層強化学習AIによる板厚最適化手法の提案2023

    • Author(s)
      野波諒太
    • Organizer
      M&M・CMD 若手シンポジウム 2023
    • Data Source
      KAKENHI-PROJECT-23K13508
  • 1.  北村 充 (40195293)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 2.  山本 剛大 (00802860)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  三村 陽一 (50509528)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi