• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Matsumura Tomoo  松村 朝雄

ORCIDConnect your ORCID iD *help
Researcher Number 80755223
Other IDs
Affiliation (Current) 2025: 国際基督教大学, 教養学部, 准教授
Affiliation (based on the past Project Information) *help 2020 – 2024: 国際基督教大学, 教養学部, 准教授
2016 – 2021: 岡山理科大学, 理学部, 講師
Review Section/Research Field
Principal Investigator
Basic Section 11010:Algebra-related / Algebra
Except Principal Investigator
Basic Section 11020:Geometry-related / Basic Section 11010:Algebra-related
Keywords
Principal Investigator
Lascoux多項式 / key多項式 / シューベルトカルキュラス / Monk's formula / flagged Q functions / shifted marked tableaux / Pieri-Chevalley則 / Key多項式 / flagged Schur Q function / shifted marked tableau … More / vexillary / Schubert polynomial / hyperoctohedral群 / 対称群 / permutahedron / 旗付きグロタンディック多項式 / 旗付きシュアー多項式 / シューベルト計算 / Schur多項式 / タブロー公式 / 代数的コボルディズム / algebraic cobordism / Bott-Samelson類 / 行列式公式 / Grothendieck多項式 / K理論 / シューベルト類 / 同変コホモロジー / Q関数 / flagged tableaux / ラグランジアン・グラスマン多様体 / flagged Grothendieck多項式 / グラスマン多様体 / 旗多様体 / グロタンディック多項式 / シュアー多項式 / シューベルト多項式 … More
Except Principal Investigator
応用代数幾何学 / 数え上げ幾何学 / 代数的コボルディズム / 特性類理論 / 特異点論 / 可積分系 / アフィングラスマン多様体 / ピーターソン同型 / シューベルト類 / K-Peterson 同型 / Grothendieck 多項式 / シューベルト・カルキュラス / 量子K理論 / グラスマン多様体 / 量子 K 理論 / シューベルト多様体 / ヴェクシラリ / ヒルベルト・サミュエル重複度 / Peterson 同型 / アフィン・グラスマン多様体 / 量子 K 環 Less
  • Research Projects

    (4 results)
  • Research Products

    (14 results)
  • Co-Researchers

    (4 People)
  •  21世紀のヒルベルト第15問題―深化と展望

    • Principal Investigator
      大本 亨
    • Project Period (FY)
      2023 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (B)
    • Review Section
      Basic Section 11020:Geometry-related
    • Research Institution
      Waseda University
  •  アイソトロピック・グラスマン多様体のシューベルトカルキュラスPrincipal Investigator

    • Principal Investigator
      松村 朝雄
    • Project Period (FY)
      2020 – 2024
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      International Christian University
  •  Schubert calculus in quantum K theory

    • Principal Investigator
      Ikeda Takeshi
    • Project Period (FY)
      2018 – 2021
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 11010:Algebra-related
    • Research Institution
      Waseda University
      Okayama University of Science
  •  K-theoretic Schubert Calculus for GrassmanniansPrincipal Investigator

    • Principal Investigator
      Matsumura Tomoo
    • Project Period (FY)
      2016 – 2020
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Algebra
    • Research Institution
      International Christian University
      Okayama University of Science

All 2023 2021 2020 2019 2018 2017

All Journal Article Presentation

  • [Journal Article] A Tableau Formula for Vexillary Schubert Polynomials in Type C2023

    • Author(s)
      Tomoo Matsumura
    • Journal Title

      The electric Journal of Combinatorics

      Volume: 30 Issue: 1 Pages: 1-28

    • DOI

      10.37236/11091

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K03571
  • [Journal Article] Double Grothendieck polynomials for Symplectic and Odd Orthogonal Grassmannians2020

    • Author(s)
      Hudson Thomas、Ikeda Takeshi、Matsumura Tomoo、Naruse Hiroshi
    • Journal Title

      Journal of Algebra

      Volume: 546 Pages: 294-314

    • DOI

      10.1016/j.jalgebra.2019.11.002

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K05057, KAKENHI-PROJECT-16K17584, KAKENHI-PROJECT-16H03921, KAKENHI-PROJECT-17H02838
  • [Journal Article] Double Grothendieck Polynomials for Symplectic and Odd Orthogonal Grassmannians2020

    • Author(s)
      T. Hudson, T. Ikeda, H. Naruse, T. Matsumura
    • Journal Title

      Journal of Algebra

      Volume: 546 Pages: 294-314

    • Data Source
      KAKENHI-PROJECT-18K03261
  • [Journal Article] Flagged Grothendieck Polynomials2019

    • Author(s)
      Tomoo Matsumura
    • Journal Title

      Journal of Algebraic combinatorics

      Volume: 49 Issue: 3 Pages: 209-228

    • DOI

      10.1007/s10801-018-0841-3

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-16K17584
  • [Journal Article] Vexillary degeneracy loci classes in K-theory and algebraic cobordism2018

    • Author(s)
      Hudson Thomas、Matsumura Tomoo
    • Journal Title

      European Journal of Combinatorics

      Volume: 70 Pages: 190-201

    • DOI

      10.1016/j.ejc.2018.01.001

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17584
  • [Journal Article] Kempf-Laksov Schubert classes for even infinitesimal cohomology theories,2018

    • Author(s)
      Thomas Hudson, Tomoo Matsumura
    • Journal Title

      Schubert Varieties, Equivariant cohomology and Characteristic classes, IMPANGA15

      Volume: 1 Pages: 127-151

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17584
  • [Journal Article] An algebraic proof of determinant formulas of Grothendieck polynomials2017

    • Author(s)
      Tomoo Matsumura
    • Journal Title

      Proc. Japan Acad. Ser. A Math. Sci.

      Volume: 93 Pages: 82-85

    • NAID

      40021371450

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-16K17584
  • [Journal Article] Degeneracy loci classes in K -theory ? determinantal and Pfaffian formula2017

    • Author(s)
      Hudson Thomas、Ikeda Takeshi、Matsumura Tomoo、Naruse Hiroshi
    • Journal Title

      Advances in Mathematics

      Volume: 320 Pages: 115-156

    • DOI

      10.1016/j.aim.2017.08.038

    • Peer Reviewed / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17584, KAKENHI-PROJECT-16H03921, KAKENHI-PROJECT-17H02838
  • [Presentation] Stability of Schubert varieties and Bott-Samelson resolutions2021

    • Author(s)
      Matsumura, Tomoo
    • Organizer
      Toric Topology 2021 in Osaka
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17584
  • [Presentation] A tableau formula of the double Grothendieck polynomials associated to 321 avoiding permutations2018

    • Author(s)
      Tomoo Matsumura
    • Organizer
      2018年度秋季総合分科会(於:岡山大学)
    • Data Source
      KAKENHI-PROJECT-16K17584
  • [Presentation] 旗多様体のK理論における321-avoiding置換のシューベルト類の公式について2018

    • Author(s)
      Tomoo Matsumura
    • Organizer
      AlgebraicLie Theory and Representation Theory 2018
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17584
  • [Presentation] 旗多様体の K 理論における 321-avoiding 置換のシューベルト類の公式について2018

    • Author(s)
      Tomoo Matsumura
    • Organizer
      RIMS 研究 集会「変換群論における幾何・代数・組み合わせ論」
    • Invited
    • Data Source
      KAKENHI-PROJECT-16K17584
  • [Presentation] Degeneracy loci and Hessenberg varieties2018

    • Author(s)
      Tomoo Matsumura
    • Organizer
      Hessenberg varieties 2018 in Osaka
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17584
  • [Presentation] Determinant formulas in Schubert calculus2017

    • Author(s)
      Tomoo Matsumura
    • Organizer
      International Festival in Schubert Calculus
    • Invited / Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-16K17584
  • 1.  Ikeda Takeshi (40309539)
    # of Collaborated Projects: 3 results
    # of Collaborated Products: 1 results
  • 2.  大本 亨 (20264400)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 3.  諏訪 立雄 (40109418)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results
  • 4.  與倉 昭治 (60182680)
    # of Collaborated Projects: 1 results
    # of Collaborated Products: 0 results

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi