• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Takenaga Tomomi  竹永 智美

ORCIDConnect your ORCID iD *help
Researcher Number 80779786
Other IDs
Affiliation (Current) 2025: 東京大学, 医学部附属病院, 特任助教
Affiliation (based on the past Project Information) *help 2025: 東京大学, 医学部附属病院, 特任助教
2022 – 2023: 東京大学, 医学部附属病院, 特任助教
2017 – 2021: 東京大学, 医学部附属病院, 特任研究員
Review Section/Research Field
Principal Investigator
Basic Section 90130:Medical systems-related / Medical Physics and Radiological Technology
Keywords
Principal Investigator
MRI / CADe / segmentation / Gd-EOB-DTPA / FC-ResNet / CADx / liver segment / liver nodule / computer aided detection / computer aided diagnosis … More / liver segments / liver nodular lesions / Gd-EOB-DTPA enhanced MRI / detection / classification / computer-aided diagnosis / radiology report / EOB-MRI / 4D-DCNN / 深層畳み込みニューラルネットワーク / 自動検出 Less
  • Research Projects

    (3 results)
  • Research Products

    (6 results)
  •  EOB-MR画像における自己教師あり学習による基盤モデルの構築Principal Investigator

    • Principal Investigator
      竹永 智美
    • Project Period (FY)
      2025 – 2027
    • Research Category
      Grant-in-Aid for Scientific Research (C)
    • Review Section
      Basic Section 90130:Medical systems-related
    • Research Institution
      The University of Tokyo
  •  Implementation of Computer-Aided Diagnosis for Liver Nodular Lesions in Gd-EOB-DTPA Enhanced MRIPrincipal Investigator

    • Principal Investigator
      Takenaga Tomomi
    • Project Period (FY)
      2020 – 2023
    • Research Category
      Grant-in-Aid for Early-Career Scientists
    • Review Section
      Basic Section 90130:Medical systems-related
    • Research Institution
      The University of Tokyo
  •  Development of four-dimensional deep convolutional neural network-based nodular liver lesion detection software in Gd-EOB-DTPA-enhanced MRI.Principal Investigator

    • Principal Investigator
      Takenaga Tomomi
    • Project Period (FY)
      2017 – 2019
    • Research Category
      Grant-in-Aid for Young Scientists (B)
    • Research Field
      Medical Physics and Radiological Technology
    • Research Institution
      The University of Tokyo

All 2023 2019 2018 2017

All Journal Article Presentation

  • [Journal Article] Development and evaluation of an integrated liver nodule diagnostic method by combining the liver segment division and lesion localization/classification models for enhanced focal liver lesion detection2023

    • Author(s)
      Takenaga Tomomi、Hanaoka Shouhei、Nomura Yukihiro、Nakao Takahiro、Shibata Hisaichi、Miki Soichiro、Yoshikawa Takeharu、Hayashi Naoto、Abe Osamu
    • Journal Title

      Radiological Physics and Technology

      Volume: 17 Issue: 1 Pages: 103-111

    • DOI

      10.1007/s12194-023-00753-y

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-20K20215
  • [Journal Article] Four-dimensional fully convolutional residual network-based liver segmentation in Gd-EOB-DTPA-enhanced MRI2019

    • Author(s)
      Tomomi Takenaga, Shouhei Hanaoka, Yukihiro Nomura, Mitsutaka Nemoto, Masaki Murata, Takahiro Nakao, Soichiro Miki, Takeharu Yoshikawa, Naoto Hayashi & Osamu Abe
    • Journal Title

      International Journal of Computer Assisted Radiology and Surgery

      Volume: 14 Issue: 8 Pages: 1259-1266

    • DOI

      10.1007/s11548-019-01935-z

    • Peer Reviewed
    • Data Source
      KAKENHI-PROJECT-17K17653
  • [Presentation] 深層学習を用いた EOB-MR 画像に基づく限局性肝病変の検出と分類:データセット選択による精度の向上2023

    • Author(s)
      竹永智美, 花岡昇平, 野村行弘, 吉川健啓, 阿部修
    • Organizer
      第51回日本磁気共鳴医学会大会
    • Data Source
      KAKENHI-PROJECT-20K20215
  • [Presentation] FC-ResNetを用いたGd-EOB-DTPA造影MR画像における肝臓セグメンテーション2018

    • Author(s)
      竹永智美
    • Organizer
      第2回人工知能応用医用画像研究会
    • Data Source
      KAKENHI-PROJECT-17K17653
  • [Presentation] A preliminary study of the computerized detection of nodular liver lesion in Gd-EOB-DTPA-enhanced magnetic resonance images with 4D CNN2018

    • Author(s)
      Tomomi Takenaga
    • Organizer
      Computer Assisted Radiology and Surgery(CARS)2018
    • Int'l Joint Research
    • Data Source
      KAKENHI-PROJECT-17K17653
  • [Presentation] 3D-DCNNを用いたEOB-MR画像における肝結節病変自動検出法の開発2017

    • Author(s)
      竹永智美
    • Organizer
      第36回日本医用画像工学会
    • Data Source
      KAKENHI-PROJECT-17K17653

URL: 

Are you sure that you want to link your ORCID iD to your KAKEN Researcher profile?
* This action can be performed only by the researcher himself/herself who is listed on the KAKEN Researcher’s page. Are you sure that this KAKEN Researcher’s page is your page?

この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi