メニュー
Search
Search Research Projects
Search Researchers
How to Use
Japanese
English
Back to previous page
Yuasa Wataru
湯淺 亘
Connect your ORCID iD
*help
…
Alternative Names
湯淺 亘 ユアサ ワタル
Less
Researcher Number
80824961
Other IDs
Affiliation (Current)
2022: 京都大学, 数理解析研究所, 研究員
Affiliation (based on the past Project Information)
*help
2019 – 2021: 京都大学, 数理解析研究所, 特別研究員(PD)
Review Section/Research Field
Principal Investigator
Basic Section 11020:Geometry-related
Keywords
Principal Investigator
スケイン代数 / クラスター代数 / 色付きジョーンズ多項式 / 量子不変量 / 量子トポロジー / 圏化 / 低次元トポロジー / 結び目
Research Projects
(
1
results)
Research Products
(
15
results)
Project Start Year (Newest)
Project Start Year (Oldest)
Calculations of representation categories of quantum groups by linear skein theory and its applications to quantum topology
Principal Investigator
Principal Investigator
湯淺 亘
Project Period (FY)
2019 – 2022
Research Category
Grant-in-Aid for Early-Career Scientists
Review Section
Basic Section 11020:Geometry-related
Research Institution
Kyoto University
All
2022
2021
2020
2019
All
Presentation
[Presentation] Stated and marked skein algebras
2022
Author(s)
湯淺亘
Organizer
日本数学会2022年度年会
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Skein and cluster algebras of marked surfaces without punctures for $\mathfrak{sl}_{3}$
2021
Author(s)
湯淺亘
Organizer
Quantum Geometry and Representation Theory
Invited / Int'l Joint Research
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Skein and cluster algebras of marked surfaces without punctures for sl_3
2021
Author(s)
湯淺亘
Organizer
広島大学 トポロジー・幾何セミナー
Invited
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Skein realization of cluster algebras with coefficients from marked surfaces
2021
Author(s)
湯淺亘
Organizer
Infinite Analysis 21 workshop Around Cluster Algebras
Invited
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Skein and cluster algebras of marked surfaces without punctures for sl_3
2021
Author(s)
湯淺亘
Organizer
東京大学 トポロジー火曜セミナー
Invited
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Skein and cluster algebras of marked surfaces without punctures for sl_3
2021
Author(s)
湯淺亘
Organizer
拡大 KOOK セミナー 2021
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Filtered and graded $\mathfrak{sl}_{3}$-skein algebras of marked surfaces without punctures
2021
Author(s)
湯淺亘
Organizer
Hurwitz action online フルビッツ作用とその周辺
Invited
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] A full twist formula for the A_2 skein colored with (m,n) and (k,0)
2020
Author(s)
湯淺亘
Organizer
ひねる代数~Hurwitz actionとその周辺~
Invited
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Twist formulas for one-row colored $A_2$ webs and $\mathfrak{sl}_{3}$ tails of $(2,2m)$-torus links
2020
Author(s)
湯淺亘
Organizer
Intelligence of Low-dimensional Topology
Invited / Int'l Joint Research
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Zero stability for the one-row colored $\mathfrak{sl}_{3}$ Jones polynomial
2020
Author(s)
湯淺亘
Organizer
東工大トポロジーセミナー
Invited
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] The sl(3) colored Jones polynomial of (2,m)-torus links and its tails
2020
Author(s)
湯淺亘
Organizer
The 15th East Asian Conference on Geometric Topology
Int'l Joint Research
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] 色付きジョーンズ多項式の tail と $q$-級数
2020
Author(s)
湯淺亘
Organizer
Friday Tea Time Zoom Seminar
Invited
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Zero stability for the one-row colored $\mathfrak{sl}_{3}$ Jones polynomial
2020
Author(s)
湯淺亘
Organizer
Friday Seminar on Knot Theory
Invited
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] The tail of the one-row colored $\mathfrak{sl}_{3}$ Jones polynomial and the Andrews-Gordon type identity
2020
Author(s)
湯淺亘
Organizer
表現論セミナー
Invited
Data Source
KAKENHI-PROJECT-19K14528
[Presentation] Categorification of two-variable Chebyshev polynomials via linear skein theory
2019
Author(s)
湯淺亘
Organizer
結び目の数理II
Data Source
KAKENHI-PROJECT-19K14528
×
Are you sure that you want to connect your ORCID iD to this researcher?
* This action can be performed only by the researcher themselves.
この研究者とORCID iDの連携を行いますか?
※ この処理は、研究者本人だけが実行できます。
×
×